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Motivation and derivation of the SPDE

Supervised learning

Having a large sets of data {(θi , γi ), i ∈ I}, one needs to find a function
f : Θ → R such that f (θi ) = γi .

Usually one approximates f by

fn(θ) =
1

n

n∑
k=1

U(θ, xk),

where xk ∈ Rd , k ∈ {1, . . . , n}, are parameters which have to be found.
Example: U(θ, x) = c · h(a · θ + b), x = (a, b, c)

We measure the distance between f and fn by the generalization error

L[fn] =
1

2
Em =

1

2

∫
Θ

m(dθ),

where m is the distribution of θi .
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Motivation and derivation of the SPDE

Stochastic gradient descent

The parameters xk , k ∈ {1, . . . , n} can be learned by stochastic gradient descent

x̂k(ti+1) = x̂k(ti )−∇xk l(f (θi ), fn(θi ; x))∆t

where ∆t is a learning rate, ti = i∆t, {θi , i ∈ N} are iid with distribution m,
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Motivation and derivation of the SPDE

Convergence to deterministic SPDE

According to [Mei, Montanarib, Nguyen. A mean field view of the landscape of
two-layer neural networks]

d(µ̂n
t , µt) = O

(
1√
n

)
+ O

(√
∆t

)
,

where µt solves
dµt = −∇ (V (·, µt)µt) dt

with
V (x , µ) = EVi (x , µ) = ∇F (x)− ⟨∇xK (x , ·), µ⟩

and
F (x) = Emf (θ)U(θ, x), K (x , y) = Em[U(θ, x)U(θ, y)].
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Motivation and derivation of the SPDE

Main goal

Problem. After passing to the deterministic gradient flow µ all of the
information about the inherent fluctuations of the stochastic gradient
descent is lost.

Goal: To identify a class of nonlinear conservative SPDEs which serve
as such a fluctuating continuum model and show that those equations
give a better approximation of the SGD dynamics than the
deterministic SDE in the overparametrised regime.

Vitalii Konarovskyi (Bielefeld University) Conservative SPDEs and SGD September 14, 2022 6 / 30



Motivation and derivation of the SPDE

Main goal

Problem. After passing to the deterministic gradient flow µ all of the
information about the inherent fluctuations of the stochastic gradient
descent is lost.

Goal: To identify a class of nonlinear conservative SPDEs which serve
as such a fluctuating continuum model and show that those equations
give a better approximation of the SGD dynamics than the
deterministic SDE in the overparametrised regime.

Vitalii Konarovskyi (Bielefeld University) Conservative SPDEs and SGD September 14, 2022 6 / 30



Motivation and derivation of the SPDE

SDE for SGD

Stochastic gradient descent

x̂k(ti+1) = x̂k(ti ) + Vi (x̂k(ti ), µ̂
n
ti )∆t

= x̂k(ti ) + V (x̂k(ti ), µ̂
n
ti )∆t +

√
∆t

(
Vi (x̂k(ti ), µ̂

n
ti )− V (x̂k(ti ), µ̂

n
ti )
)√

∆t

is the Euler-Maruyama scheme for the SDE

dxk(t) = V (xk(t), µ
n
t )dt +

√
∆tdBk(t), k ∈ {1, . . . , n}

d [Bk ,Bl ]t = Cov (Vi ,Vi ) dt = Ã(xk(t), xl(t), µ
n
t )dt,

where µn
t = 1

n

∑n
i=1 δxi (t), k , l ∈ {1, . . . , n}.
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Motivation and derivation of the SPDE

Equation for empirical measure µn
t

We came to the SDE

dxk(t) = V (xk(t), µ
n
t )dt +

√
αdBk(t)

d [Bk ,Bl ]t = Ã(xk(t), xl(t), µ
n
t )dt,

where µn
t = 1

n

∑n
l=1 δxl (t), Ã(x , y , µ) = (EmGk(x , µ, θ)Gl(y , µ, θ))i,j∈[d ].

Taking φ ∈ C2
c (Rd), we get for the empirical measure µn

t

⟨φ, µn
t ⟩ = ⟨φ, µn

0⟩+
α

2

∫ t

0

〈
∇2φ : A(·, µn

s ), µ
n
s

〉
ds +

∫ t

0

⟨∇φ · V (·, µn
s ), µ

n
s ⟩ ds

+Martingale,

where A(x , µ) = Ã(x , x , µ) and

[Martingale]t = α

∫ t

0

∫
Rd

∫
Rd

(∇φ(x)⊗∇φ(y)) : Ã(x , y , µn
s )µ

n
s (dx)µ

n
s (dy)ds

Note that fn(θ) =
1
n

∑n
k=1 U(θ, xk(t)) =

∫
Rd U(θ, x)µn

t (dx) should approximate
the true function f for large t.

1B : C =
∑d

i,j=1 Bi,jCi,j
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Motivation and derivation of the SPDE

Overparametrised limit (n → ∞)

Assuming that the number of parameters n → ∞ and xi (0) ∼ µ0 are i.i.d.,
the limit µt = limn→∞ µn

t solves the SPDE: ∀φ ∈ C2
c (Rd)

⟨φ, µt⟩ = ⟨φ, µ0⟩+
α

2

∫ t

0

〈
∇2φ : A(·, µs), µs

〉
ds +

∫ t

0

⟨∇φ · V (·, µs), µs⟩ ds

+Mφ(t),

[Mφ]t = α

∫ t

0

∫
Rd

∫
Rd

(∇φ(x)⊗∇φ(y)) : Ã(x , y , µs)µs(dx)µs(dy)ds

where Ã(x , y , µ) = (EmGk(x , µ, θ)Gl(y , µ, θ))k,l∈[d ] and A(x , µ) = Ã(x , x , µ).

For more details regarding derivation of the martingale problem above see

[Rotskoff, Vanden-Eijnden Trainability and accuracy off neural networks: an interacting particle

system approach (to appear in CPAM)]
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Motivation and derivation of the SPDE

Stochastic mean-field equation

We will assume the noise of equation has a special structure:
we will take a cylindrical Wiener process W on L2(Θ,m) and assume

Mφ(t) =
√
α

∫ t

0

∫
Θ

⟨∇φ · G (·, µs , θ), µs⟩W (dθ, ds)

then

[Mφ]t = α

∫ t

0

∫
Θ

⟨∇φ · G (·, µs , θ), µs⟩ ⟨∇φ · G (·, µs , θ), µs⟩m(dθ)ds

=

∫ t

0

∫
Rd

∫
Rd

(∇φ(x)⊗∇φ(y)) : Ã(x , y , µs)µs(dx)µs(dy)ds

We come to the Stochastic Mean-Field Equation (SMFE):

dµt =
α

2
∇2 : (A(·, µt)µt)dt−∇·(V (·, µt)µt)dt+

√
α∇·

∫
Θ

G (·, µt , θ)µt W (dθ, dt)
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(∇φ(x)⊗∇φ(y)) : Ã(x , y , µs)µs(dx)µs(dy)ds

We come to the Stochastic Mean-Field Equation (SMFE):

dµt =
α

2
∇2 : (A(·, µt)µt)dt−∇·(V (·, µt)µt)dt+

√
α∇·

∫
Θ

G (·, µt , θ)µt W (dθ, dt)

Vitalii Konarovskyi (Bielefeld University) Conservative SPDEs and SGD September 14, 2022 10 / 30



Well-posedness and superposition principle
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Well-posedness and superposition principle

Related works

dµt =
1

2
∇2 : (A(·, µt)µt) dt −∇ · (V (·, µt)µt) dt −∇ ·

∫
Θ
(G(·, µt , θ)µt)W (dθ, dt),

Well-posedness results for similar SPDEs:

Continuity equation in the fluid dynamics and optimal transportation
[Ambrosio, Trevisan, Crippa. . . ]. There A = G = 0.

Stochastic nonlinear Fokker-Planck equation [Coghi, Gess ’19]. The
covariance A has more general structure (i.e. A(x , µ)− Ã(x , x , µ) ≥ 0) but
the noise is finite-dimensional.

Strong superposition solutions of SDEs [Flandoli ’09]. Only the existence
of solutions. The coefficients are independent of µ and the noise is additive
(G does not depend on µ and x .)

Particle representations for a class of nonlinear SPDEs [Kurtz, Xiong
’99]. The equation has more general form but the initial condition µ0 must
have an L2-density w.r.t. the Lebesgue measure.

The results from [Kurtz, Xiong] can be applied to our equation if µ0 has
L2-density!
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Well-posedness and superposition principle

Definition of solutions to SMFE

dµt =
1

2
∇2 : (A(·, µt)µt) dt −∇ · (V (·, µt)µt) dt −∇ ·

∫
Θ

G (·, µt , θ)µtW (dθ, dt)

Definition of (weak-strong) solution

A continuous (FW
t )-adapted process µt , t ≥ 0, in P2(Rd) is a solution to

SMFE started from µ0 if ∀ φ ∈ C2
c (Rd) a.s. ∀t ≥ 0

⟨φ, µt⟩ = ⟨φ, µ0⟩+
1

2

∫ t

0

〈
∇2φ : A(·, µs), µs

〉
ds +

∫ t

0

⟨∇φ · V (·, µs), µs⟩ ds

+

∫ t

0

∫
Θ

⟨∇φ · G(·, µs , θ), µs⟩W (dθ, ds)
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Well-posedness and superposition principle

SDE with interaction

The SMFE has a connection with the SDE with interaction (Kotelenez ’95)

dX (u, t) = V (X (u, t), µ̄t)dt +

∫
Θ

G (X (u, t), µ̄t , θ)W (dθ, dt),

X (u, 0) = u, µ̄t = µ0 ◦ X−1(·, t), u ∈ Rd , t ≥ 0.

Theorem (Dorogovtsev’ 07)

Let V ,G be Lipschitz continuous, i.e. ∃L > 0 such that a.s.

|V (x , µ)− V (y , ν)|+ ∥|G(x , µ, ·)− G(y , ν, ·)|∥m ≤ L (|x − y |+W2(µ, ν)) .

Then for every µ0 ∈ P2(Rd) the SDE with interaction has a unique solution
started from µ0.
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Well-posedness and superposition principle

SMFE and SDE with interaction

Lemma

Let X be a solution to the SDE with interaction with µ0 ∈ P2(Rd).
Then µ̄t = µ0 ◦ X−1(·, t), t ≥ 0, is a solution to the SMFE.

Definition: We will say that µ̄t , t ≥ 0, is a superposition solution to the
stochastic mean-field equation.

Corollary

Let V ,G be Lipschitz continuous. Then the SMFE

dµt =
1

2
∇2 : (A(·, µt)µt) dt −∇ · (V (·, µt)µt) dt −∇ ·

∫
Θ

G(·, µt , θ)µtW (dθ, dt)

has a unique solution iff it has only superposition solutions.
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Well-posedness and superposition principle

Uniqueness of solutions to SMFE

To prove the uniqueness, we show that every solution to the (nonlinear)
SMFE is a superposition solution.

We first freeze the solution µt in the coefficients, considering the linear
SPDE:

dνt =
1

2
∇2 : (a(t, ·)νt) dt −∇ · (v(t, ·)νt) dt

−∇ ·
∫
Θ

g(t, ·, θ)νtW (dθ, dt),

where a(t, x) = A(x , µt), v(t, x) = V (x , µt) and g(t, x , θ) = G (x , µt , θ).

We remove the second order term and the noise term from the linear SPDE
by a (random) transformation of the space.
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Well-posedness and superposition principle

Random transformation of the space

We introduce the field of martingales

M(x , t) =

∫ t

0

g(s, x , θ)W (dθ, ds), x ∈ Rd , t ≥ 0.

and consider a solution ψt(x) = (ψ1
t (x), . . . , ψ

d
t (x)) to the stochastic transport

equation

ψk
t (x)= xk −

∫ t

0

∇ψk
s (x) ·M(x , ◦ds), t ≥ 0, x ∈ Rd , k ∈ {1, . . . , d}.

Lemma (see Kunita Stochastic flows and SDEs)

Under some smooth assumption on the coefficient g , the exists a field of
diffeomorphisms ψ(t, ·) : Rd → Rd , t ≥ 0, which solves the stochastic
transport equation.
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Well-posedness and superposition principle

Transformation of space

For the solution νt , t ≥ 0, to the linear SPDE

dνt =
1

2
∇2 : (a(t, ·)νt) dt −∇ · (v(t, ·)νt) dt −∇ ·

∫
Θ

g(t, ·, θ)νtW (dθ, dt),

we define
ρt = νt ◦ ψ−1

t , t ≥ 0

Proposition

Let the coefficient g be smooth enough. Then ρt , t ≥ 0, is a solution to
the continuity equationa

dρt = −∇(b(t, ·)ρt)dt, ρ0 = ν0 = µ0,

for some b depending on v and derivatives of a and ψ.

aAmbrosio, Lions, Trevisan,. . .
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Well-posedness and superposition principle

Well-posedness of SMFE

Theorem (Gess, Gvalani, K. 2022)

Let the coefficients V ,G be Lipschitz continuous and smooth enough w.r.t.
spetial variable. Then the SMFE

dµt =
1

2
∇2 : (A(·, µt)µt) dt −∇ · (V (·, µt)µt) dt −∇ ·

∫
Θ

G(·, µt , θ)µtW (dθ, dt)

has a unique solution. Moreover, µt is a superposition solution, i.e.,

µt = µ0 ◦ X−1(·, t), t ≥ 0,

where X solves

dX (u, t) = V (X (u, t), µt)dt +

∫
Θ

G(X (u, t), µt , θ)W (dθ, dt), X (u, 0) = u.
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Limiting behaviour of solutions to SMFE
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Limiting behaviour of solutions to SMFE

Wasserstein distance

Let (E , d) be a Polish space, and for p ≥ 1 Pp(E ) be a space of all probability
measures ρ on E with ∫

E

dp(x , o)ρ(dx) <∞.

For ρ1, ρ2 ∈ Pp(E ) we define the Wasserstein distance by

Wp
p (ρ1, ρ2) = inf

{∫
E 2

dp(x , y)χ(dx , dy) :
χ(· × E ) = ρ1,
χ(E × ·) = ρ2

}

Wikipedia

Vitalii Konarovskyi (Bielefeld University) Conservative SPDEs and SGD September 14, 2022 21 / 30



Limiting behaviour of solutions to SMFE

Wasserstein distance

Let (E , d) be a Polish space, and for p ≥ 1 Pp(E ) be a space of all probability
measures ρ on E with ∫

E

dp(x , o)ρ(dx) <∞.

For ρ1, ρ2 ∈ Pp(E ) we define the Wasserstein distance by

Wp
p (ρ1, ρ2) = inf

{∫
E 2

dp(x , y)χ(dx , dy) :
χ(· × E ) = ρ1,
χ(E × ·) = ρ2

}

Wikipedia

Vitalii Konarovskyi (Bielefeld University) Conservative SPDEs and SGD September 14, 2022 21 / 30



Limiting behaviour of solutions to SMFE

Wasserstein distance

Let (E , d) be a Polish space, and for p ≥ 1 Pp(E ) be a space of all probability
measures ρ on E with ∫

E

dp(x , o)ρ(dx) <∞.

For ρ1, ρ2 ∈ Pp(E ) we define the Wasserstein distance by

Wp
p (ρ1, ρ2) = inf

{∫
E 2

dp(x , y)χ(dx , dy) :
χ(· × E ) = ρ1,
χ(E × ·) = ρ2

}
= inf

{
Edp(ξ1, ξ2) : ξi ∼ ρi

}

Wikipedia

Vitalii Konarovskyi (Bielefeld University) Conservative SPDEs and SGD September 14, 2022 21 / 30



Limiting behaviour of solutions to SMFE

Wasserstein distance

Let (E , d) be a Polish space, and for p ≥ 1 Pp(E ) be a space of all probability
measures ρ on E with ∫

E

dp(x , o)ρ(dx) <∞.

For ρ1, ρ2 ∈ Pp(E ) we define the Wasserstein distance by

Wp
p (ρ1, ρ2) = inf

{∫
E 2

dp(x , y)χ(dx , dy) :
χ(· × E ) = ρ1,
χ(E × ·) = ρ2

}
= inf

{
Edp(ξ1, ξ2) : ξi ∼ ρi

}

Proposition

(Pp(E ),Wp) is a Polish space.

Wikipedia

Vitalii Konarovskyi (Bielefeld University) Conservative SPDEs and SGD September 14, 2022 21 / 30



Limiting behaviour of solutions to SMFE

Convergence of the empirical measure

Theorem (Gess, Gvalani, K. 2022)

Let µn,α and µα be superposition solutions to the SMFE

dµt =
α

2
∇2 : (A(·, µt)µt) dt −∇ · (V (·, µt)µt) dt

−
√
α∇ ·

∫
Θ

G(·, µt , θ)µtW (dθ, dt),

started from µn
0 = 1

n

∑n
i=1 δxi and µ0, respectively, where xi ∼ µ0 are

independent. Then

E sup
t∈[0,T ]

W2
2 (µ

n,α
t , µα

t ) ≤ CEW2
2 (µ

n
0, µ0) ≤ C ′n−1,

where the constants C ,C ′ are independent of α.

Vitalii Konarovskyi (Bielefeld University) Conservative SPDEs and SGD September 14, 2022 22 / 30



Limiting behaviour of solutions to SMFE

Idea of the proof

Since µn,α and µα are superposition solutions,

µn,α
t = µn

0 ◦ X−1
n,α(·, t), µα = µ0 ◦ X−1

α (·, t),

where Xn,α and Xα are solutions to

dX (u, t) = V (X (u, t), µt)dt +
√
α

∫
Θ

G(X (u, t), µt , θ)W (dθ, dt), X (u, 0) = u.

Hence, for any χ with marginals µn
0 and µ0, we get

E sup
s∈[0,t]

W2
2 (µ

n,α
s , µα

s ) ≤ E sup
s∈[0,t]

∫
R2d

|Xn,α(u, s)− Xα(v , s)|2χ(du, dv)

≤ C

∫
R2d

|u − v |2χ(du, dv) + C

∫ t

0

EW2
2 (µ

n,α
s , µα

s )ds.

Vitalii Konarovskyi (Bielefeld University) Conservative SPDEs and SGD September 14, 2022 23 / 30



Limiting behaviour of solutions to SMFE

Idea of the proof

Since µn,α and µα are superposition solutions,

µn,α
t = µn

0 ◦ X−1
n,α(·, t), µα = µ0 ◦ X−1

α (·, t),

where Xn,α and Xα are solutions to

dX (u, t) = V (X (u, t), µt)dt +
√
α

∫
Θ

G(X (u, t), µt , θ)W (dθ, dt), X (u, 0) = u.

Hence, for any χ with marginals µn
0 and µ0, we get

E sup
s∈[0,t]

W2
2 (µ

n,α
s , µα

s ) ≤ E sup
s∈[0,t]

∫
R2d

|Xn,α(u, s)− Xα(v , s)|2χ(du, dv)

≤ C

∫
R2d

|u − v |2χ(du, dv) + C

∫ t

0

EW2
2 (µ

n,α
s , µα

s )ds.

Vitalii Konarovskyi (Bielefeld University) Conservative SPDEs and SGD September 14, 2022 23 / 30



Limiting behaviour of solutions to SMFE

Law of large numbers behavior for α → 0

Theorem (Gess, Gvalani, K. 2022)

If µα is a superposition solution to

dµt =
α

2
∇2 : (A(·, µt)µt) dt −∇ · (V (·, µt)µt) dt −

√
α∇ ·

∫
Θ

G(·, µt , θ)µtW (dθ, dt)

and dµ0
t = −∇ · (V (·, µ0

t )µ
0
t )dt. Then

E sup
t∈[0,T ]

W2
2 (µ

α
t , µ

0
t ) ≤ Cα.

Corollary

E sup
t∈[0,T ]

W2
2 (µ

n, 1n
t , µ0

t ) ≤ Cn−1

or formally µ
n, 1n
t = 1

n

∑n
i=1 δxi (t) = µ0

t + O(n−1/2).
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Limiting behaviour of solutions to SMFE

Quantified central limit theorem for SMFE

Since µ
n, 1n
t = 1

n

∑n
i=1 δxi (t) = µ0

t + O(n−1/2), we consider

ηnt =
√
n
(
µn, 1n − µ0

)
.

Theorem (Gess, Gvalani, K. 2022)

There exists the Gaussian fluctuation field η, which is a solution to the linear
SPDE

dηt = −∇ ·
(
V (·, µ0

t )ηt + ⟨Ṽ (x , ·), ηt⟩µ0
t (dx)

)
dt

−∇ ·
∫
Θ

G (·, µ0
t , θ)µ

0
tW (dθ, dt).

Moreover,
E sup

t∈[0,T ]

∥ηnt − ηt∥2H−J ≤ Cn−1.
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Limiting behaviour of solutions to SMFE

Higher order approximation of the SGD dynamics

The quantified CLT gives us that

µ
n, 1n
t =

1

n

n∑
i=1

δxi (t) = µ0
t + n−1/2η + O(n−1).

On the other hand, the empirical distribution of SGD with n parameters and
learning rate α = 1

n satisfies

µ̂
n, 1n
t =

1

n

n∑
i=1

δx̂i (⌊nt⌋) = µ0
t + n−1/2η + o(n−1/2)

Therefore, µ̂n, 1n − µn, 1n = o(n−1/2).
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Higher order approximation of the SGD dynamics

Theorem (Gess, Gvalani, K. 2022)

Let µn, 1n be a superposition solution to the SMFE with learning rate α = 1
n

started from 1
n

∑n
i=1 δxi . Let also µ̂n, 1n be the empirical process associated

to the SGD with α = 1
n . Then

Wp

(
Law(µn, 1n ), Law(µ̂n, 1n )

)
= o(n−1/2)

for all p ∈ [1, 2).
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Idea of proof

√
nWp

(
Law(µn, 1n ), Law(µ̂n, 1n )

)
=

√
n inf

{
E sup

t∈[0,T ]

∥νn,
1
n

t − ν̂
n, 1n
t ∥p−J ,

νn,
1
n ∼ µn, 1n ,

ν̂n,
1
n ∼ µ̂n, 1n

}1/p

= inf

{
E sup

t∈[0,T ]

∥
√
n(ν

n, 1n
t − µ0

t )−
√
n(ν̂

n, 1n
t − µ0

t )∥
p
−J ,

νn,
1
n ∼ µn, 1n ,

ν̂n,
1
n ∼ µ̂n, 1n

}1/p

= Wp

(
Law(ηn,

1
n ), Law(η̂n,

1
n )
)

≤ Wp

(
Law(ηn,

1
n ), Law(η)

)
+Wp

(
Law(η), Law(η̂n,

1
n )
)

≤

[
E sup

t∈[0,T ]

∥ηn,
1
n

t − ηt∥pH−J

]1/p

+

[
E sup

t∈[0,T ]

∥η̂n,
1
n

t − ηt∥pH−J

]1/p

→ 0.
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Limiting behaviour of solutions to SMFE

Conclusion

Conclusion

The Stochastic Mean-Field Equation provides a higher order approxima-
tion to the SGD dynamics than the approximation by the non-fluctuation
limit µ0 which give the order O(n−1/2).
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Reference

Gess, Gvalani, Konarovskyi,
Conservative SPDEs as fluctuating mean field limits of stochastic gradient
descent
(arXiv:2207.05705)

Thank you!
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