Sticky－reflected stochastic heat equation driven by colored noise

Vitalii Konarovskyi
Leipzig University，
Hamburg University \rightarrow Bielefeld University

German Probability \＆Statistics Days Mannheim－ 2021

UNIVERSITÄT
BIELEFELD

Sticky-reflected stochastic heat equation

Sticky-reflected stochastic heat equation on $[0,1]$

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} \dot{W}_{t} \\
X_{0}=g \geq 0, \quad X_{t}(0)=X_{t}(1)=0
\end{gathered}
$$

where $\lambda>0$

Sticky-reflected stochastic heat equation

Sticky-reflected stochastic heat equation on $[0,1]$

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} \dot{W}_{t} \\
X_{0}=g \geq 0, \quad X_{t}(0)=X_{t}(1)=0
\end{gathered}
$$

where $\lambda>0$

It is similar to the SDE for sticky-reflected Brownian motion:

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t) \\
x(0) & =x_{0} \geq 0
\end{aligned}
$$

- only weak existence and uniqueness in law! (Engelbert and Peskir, 2014)

Reason of investigation

- Sticky-reflected SHE vs. Reflected SHE (Nulart and Pardoux, 1992)

$$
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\delta_{0}\left(X_{t}\right)+\dot{W}_{t}
$$

vs. skew SHE (From the talk of Oleg Butkovskyi on Monday)

- Possible connection with wetting dynamics (Deuschel, Giacomin, Zambotti, 2004)
- A new method of solving SDEs with discontinuous coefficients.

Reason of investigation

－Sticky－reflected SHE vs．Reflected SHE（Nulart and Pardoux，1992）

$$
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\delta_{0}\left(X_{t}\right)+\dot{W}_{t}
$$

vs．skew SHE（From the talk of Oleg Butkovskyi on Monday）

$$
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\beta \delta_{0}\left(X_{t}\right)+\dot{W}_{t}
$$

－Possible connection with wetting dynamics （Deuschel，Giacomin，Zambotti，2004）
－A new method of solving SDEs with discontinuous coefficients．

Reason of investigation

－Sticky－reflected SHE vs．Reflected SHE（Nulart and Pardoux，1992）

$$
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\delta_{0}\left(X_{t}\right)+\dot{W}_{t}
$$

vs．skew SHE（From the talk of Oleg Butkovskyi on Monday）

$$
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\beta \delta_{0}\left(X_{t}\right)+\dot{W}_{t}
$$

－Possible connection with wetting dynamics （Deuschel，Giacomin，Zambotti，2004）

－A new method of solving SDEs with discontinuous coefficients．

Reason of investigation

- Sticky-reflected SHE vs. Reflected SHE (Nulart and Pardoux, 1992)

$$
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\delta_{0}\left(X_{t}\right)+\dot{W}_{t}
$$

vs. skew SHE (From the talk of Oleg Butkovskyi on Monday)

$$
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\beta \delta_{0}\left(X_{t}\right)+\dot{W}_{t}
$$

- Possible connection with wetting dynamics
(Deuschel, Giacomin, Zambotti, 2004)

- A new method of solving SDEs with discontinuous coefficients.

Formulation of the main result

Sticky－reflected SHE：

$$
\begin{aligned}
\frac{\partial X_{t}}{\partial t} & =\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} \dot{W}_{t} \\
X_{0} & =g \geq 0, \quad X_{t}(0)=X_{t}(1)=0
\end{aligned}
$$

Solution to sticky－reflected SHE
is a martingale with quadratic variation

Formulation of the main result

Sticky-reflected SHE:

$$
\begin{aligned}
\frac{\partial X_{t}}{\partial t} & =\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} Q \dot{W}_{t} \\
X_{0} & =g \geq 0, \quad X_{t}(0)=X_{t}(1)=0
\end{aligned}
$$

where Q is non-negative definite self-adjoint Hilbert-Schmidt operator in $L_{2}[0,1]$

Solution to sticky-reflected SHE

is a martingale with quadratic variation

Formulation of the main result

Sticky－reflected SHE：

$$
\begin{aligned}
\frac{\partial X_{t}}{\partial t} & =\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} Q \dot{W}_{t} \\
X_{0} & =g \geq 0, \quad X_{t}(0)=X_{t}(1)=0
\end{aligned}
$$

where Q is non－negative definite self－adjoint Hilbert－Schmidt operator in $L_{2}[0,1]$

Solution to sticky－reflected SHE

A continuous process $X:[0, \infty) \times[0,1] \rightarrow \mathbb{R}$ is called a weak solution to the sticky－reflected SHE if for any $\varphi \in C^{2}[0,1]$ with $\varphi(0)=\varphi(1)=0$

$$
M_{t}^{\varphi}:=\left\langle X_{t}, \varphi\right\rangle-\left\langle X_{0}, \varphi\right\rangle-\frac{1}{2} \int_{0}^{t}\left\langle X_{s}, \varphi^{\prime \prime}\right\rangle d s-\int_{0}^{t}\left\langle\lambda \mathbb{I}_{\left\{X_{s}=0\right\}}, \varphi\right\rangle d s
$$

is a martingale with quadratic variation

$$
\left[M^{\varphi}\right]_{t}=\int_{0}^{t}\left\|Q\left(\mathbb{I}_{\left\{X_{s}>0\right\}} \varphi\right)\right\|_{L_{2}}^{2} d s
$$

Formulation of the main result

Let $\left\{e_{k}, k \geq 1\right\}$ and $\left\{\mu_{k}, k \geq 1\right\}$ be eigenvectors and eigenvalues of Q ．Define

$$
\chi^{2}:=\sum_{k=1}^{\infty} \mu_{k}^{2} e_{k}^{2} .
$$

Formulation of the main result

Let $\left\{e_{k}, k \geq 1\right\}$ and $\left\{\mu_{k}, k \geq 1\right\}$ be eigenvectors and eigenvalues of Q. Define

$$
\chi^{2}:=\sum_{k=1}^{\infty} \mu_{k}^{2} e_{k}^{2} .
$$

Theorem

If $\chi^{2}>0$ a.e., then the sticky-reflected SHE admits a weak solution.

Meaning of assumtion $\chi^{2}>0$

The equation

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t \\
x(0) & =0
\end{aligned}
$$

has no solution
$\chi^{2}=\sum_{k=1}^{\infty} \mu_{k}^{2} e_{k}^{2}>0$ means that the solution X to the equation feels a noise at any point of $[0,1]$.

Meaning of assumtion $\chi^{2}>0$

The equation

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t) \\
x(0) & =0
\end{aligned}
$$

has no solution a weak solution

feels a noise at any point of $[0,1]$.

Meaning of assumtion $\chi^{2}>0$

The equation

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t) \\
x(0) & =0
\end{aligned}
$$

has no solution a weak solution
$\chi^{2}=\sum_{k=1}^{\infty} \mu_{k}^{2} e_{k}^{2}>0$ means that the solution X to the equation

$$
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} Q \dot{W}_{t}
$$

feels a noise at any point of $[0,1]$.

Description of the idea of construction of solution
using the equation

$$
d x(t)=\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t)
$$

Approximating sequence

Consider the SDE for sticky-reflected BM:

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t), \\
x(0) & =x_{0} \geq 0 .
\end{aligned}
$$

We approximate its solution by the solutions to the SDEs

which have non-negative strong solutons $x_{n}(t) \geq 0$.

Approximating sequence

Consider the SDE for sticky-reflected BM:

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t), \\
x(0) & =x_{0} \geq 0
\end{aligned}
$$

We approximate its solution by the solutions to the SDEs

$$
\begin{aligned}
d x_{n}(t) & =\lambda\left(1-\kappa_{n}^{2}\left(x_{n}(t)\right)\right) d t+\kappa_{n}\left(x_{n}(t)\right) d w(t), \\
x_{n}(0) & =x_{0} .
\end{aligned}
$$

which have non-negative strong solutons $x_{n}(t) \geq 0$.

$$
\begin{aligned}
& \qquad \begin{aligned}
\kappa_{n}(y) & \rightarrow \mathbb{I}_{\{y>0\}} \\
1-\kappa_{n}^{2}(y) & \rightarrow 1-\mathbb{I}_{\{y>0\}}^{2}=\mathbb{I}_{\{y=0\}} \\
\text { for } y \geq 0, \text { as } n & \rightarrow \infty
\end{aligned} \\
& \text { f }
\end{aligned}
$$

Problem of approximation

One can show that $\left\{x_{n}, n \geq 1\right\}$ is tight in $C[0, \infty) \Longrightarrow$

$$
x_{n} \rightarrow x \text { in } C[0, \infty)
$$

along a subsequence．

Problem of approximation

One can show that $\left\{x_{n}, n \geq 1\right\}$ is tight in $C[0, \infty) \Longrightarrow$

$$
x_{n} \rightarrow x \text { in } C[0, \infty)
$$

along a subsequence．

But

$$
\begin{gathered}
M_{n}(t):=x_{n}(t)-x_{0}+\int_{0}^{t} \lambda\left(1-\kappa_{n}^{2}\left(x_{n}(s)\right)\right) d s \\
\downarrow \\
\downarrow \\
M(t):= \\
\neq x(t)-x_{0}+\int_{0}^{t} \lambda \mathbb{I}_{\{x(s)=0\}} d s \\
{\left[M_{n}\right]_{t}=\int_{0}^{t} \kappa_{n}^{2}\left(x_{n}(s)\right) d s \nrightarrow \int_{0}^{t} \mathbb{I}_{\{x(s)>0\}} d s}
\end{gathered}
$$

Problem of approximation

One can show that $\left\{x_{n}, n \geq 1\right\}$ is tight in $C[0, \infty) \Longrightarrow$

$$
x_{n} \rightarrow x \text { in } C[0, \infty)
$$

along a subsequence.

But

$$
\begin{gathered}
M_{n}(t):=x_{n}(t)-x_{0}+\int_{0}^{t} \lambda\left(1-\kappa_{n}^{2}\left(x_{n}(s)\right)\right) d s \\
\downarrow \quad \downarrow \\
M(t):=x(t)-x_{0}+\int_{0}^{t} \lambda\left(1-\rho^{2}(s)\right) d s \\
{\left[M_{n}\right]_{t}=\int_{0}^{t} \kappa_{n}^{2}\left(x_{n}(s)\right) d s \rightarrow \int_{0}^{t} \rho^{2}(s) d s=[M]_{t}}
\end{gathered}
$$

Problem of approximation

One can show that $\left\{x_{n}, n \geq 1\right\}$ is tight in $C[0, \infty) \Longrightarrow$

$$
x_{n} \rightarrow x \text { in } C[0, \infty)
$$

along a subsequence.

But

$$
\begin{array}{cc}
M_{n}(t) & :=x_{n}(t)-x_{0}+\int_{0}^{t} \lambda\left(1-\kappa_{n}^{2}\left(x_{n}(s)\right)\right) d s \\
\downarrow & \downarrow \\
M(t): & \downarrow \\
& \downarrow(t)-x_{0}+\int_{0}^{t} \lambda\left(1-\rho^{2}(s)\right) d s \\
{\left[M_{n}\right]_{t}} & =\int_{0}^{t} \kappa_{n}^{2}\left(x_{n}(s)\right) d s \rightarrow \int_{0}^{t} \rho^{2}(s) d s=[M]_{t}
\end{array}
$$

Why $\rho^{2}(s)=\mathbb{I}_{\{x(s)>0\}}$?

Two observations

- $\kappa_{n}^{2}\left(y_{n}\right) \nrightarrow \mathbb{I}_{\{y>0\}}$ as $y_{n} \rightarrow y$.

- If x is a continuous non-negative semimartingale with q.v.

then $[x]_{t}=\int_{0}^{t} \mathbb{I}_{\{x(s)>0\}} \sigma^{2}(s) d s$.

Two observations

- $\mathbb{I}_{\{y>0\}} \kappa_{n}^{2}\left(y_{n}\right) \rightarrow \mathbb{I}_{\{y>0\}}$ as $y_{n} \rightarrow y$.

- If x is a continuous non-negative semimartingale with q.v.

then $[x]_{t}=\int_{0}^{t} \mathbb{I}_{\{x(s)>0\}} \sigma^{2}(s) d s$.
- $\mathbb{I}_{\{y>0\}} \kappa_{n}^{2}\left(y_{n}\right) \rightarrow \mathbb{I}_{\{y>0\}}$ as $y_{n} \rightarrow y$.

- If x is a continuous non-negative semimartingale with q.v.

$$
[x]_{t}=\int_{0}^{t} \sigma^{2}(s) d s
$$

then $[x]_{t}=\int_{0}^{t} \mathbb{I}_{\{x(s)>0\}} \sigma^{2}(s) d s$.

Two observations

－ $\mathbb{I}_{\{y>0\}} \kappa_{n}^{2}\left(y_{n}\right) \rightarrow \mathbb{I}_{\{y>0\}}$ as $y_{n} \rightarrow y$ ．

－If x is a continuous non－negative semimartingale with $\mathrm{q} . \mathrm{v}$ ．

$$
[x]_{t}=\int_{0}^{t} \sigma^{2}(s) d s
$$

then $[x]_{t}=\int_{0}^{t} \mathbb{I}_{\{x(s)>0\}} \sigma^{2}(s) d s$.
Proof．

$$
\begin{aligned}
\int_{0}^{t} \sigma^{2}(s) \mathbb{I}_{\{x(s)=0\}} d s & =\int_{0}^{t} \mathbb{I}_{\{0\}}(x(s)) d[x]_{s} \\
& =\int_{-\infty}^{+\infty} \mathbb{I}_{\{0\}}(y) L_{t}^{y} d x=0
\end{aligned}
$$

where L_{t}^{y} is the local time of x at y ．

Identification of quadratic variation

Remind

$$
\begin{gathered}
M_{n}(t):=x_{n}(t)-x_{0}+\int_{0}^{t} \lambda\left(1-\kappa_{n}^{2}\left(x_{n}(s)\right)\right) d s \\
\downarrow \quad \downarrow \\
\downarrow \\
M(t):= \\
\\
{\left[M_{n}\right]_{t}=}
\end{gathered}=\int_{0}^{t} \kappa_{n}^{2}(t)-x_{0}+\int_{0}^{t} \lambda\left(1-\rho^{2}(s)\right) d s \rightarrow \int_{0}^{t} \rho^{2}(s) d s=[M]_{t} .
$$

Therefore,

Identification of quadratic variation

Remind

$$
\begin{array}{cc}
M_{n}(t): & =x_{n}(t)-x_{0}+\int_{0}^{t} \lambda\left(1-\kappa_{n}^{2}\left(x_{n}(s)\right)\right) d s \\
\downarrow & \downarrow \\
\downarrow
\end{array}
$$

Therefore,

$$
\begin{aligned}
{[x]_{t}=[M]_{t}=\int_{0}^{t} \rho^{2}(s) d s } & =\int_{0}^{t} \mathbb{I}_{\{x(s)>0\}} \rho^{2}(s) d s \\
& =\lim _{n} \int_{0}^{t} \mathbb{I}_{\{x(s)>0\}} \kappa_{n}^{2}\left(x_{n}(s)\right) d s=\int_{0}^{t} \mathbb{I}_{\{x(s)>0\}} d s
\end{aligned}
$$

Proof of existence of solution to

sticky-reflected SHE

$$
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} Q \dot{W}_{t}
$$

Discrete equation

We discretize only the space variable $u \in[0,1]$ by $\frac{k}{n}, k=1, \ldots, n$.
Set $\pi_{k}^{n}=\mathbb{I}_{\left[\frac{k-1}{n}, \frac{k}{n}\right)}$ and define

$$
w_{k}(t):=\sqrt{n} \int_{0}^{t} \int_{0}^{1}\left(Q \pi_{k}^{n}\right)(u) W(d u, d s)
$$

Consider the following SDE
$d x_{k}(t)=\frac{1}{2} \Delta^{n} x_{k}(t) d t+\mathbb{I}_{\left\{x_{k}(t)=0\right\}} d t+\sqrt{n} \mathbb{I}_{\left\{x_{k}(t)>0\right\}} d w_{k}(t), \quad k=1, \ldots, n$,
with $x_{0}(t)=x_{n+1}(t)=0 \quad$ and $\quad \Delta^{n} x_{k}=n^{2}\left(x_{k+1}+x_{k-1}-2 x_{k}\right)$

Discrete equation

We discretize only the space variable $u \in[0,1]$ by $\frac{k}{n}, k=1, \ldots, n$.
Set $\pi_{k}^{n}=\mathbb{I}_{\left[\frac{k-1}{n}, \frac{k}{n}\right)}$ and define

$$
w_{k}(t):=\sqrt{n} \int_{0}^{t} \int_{0}^{1}\left(Q \pi_{k}^{n}\right)(u) W(d u, d s)
$$

Consider the following SDE

$$
\begin{aligned}
& d x_{k}(t)=\frac{1}{2} \Delta^{n} x_{k}(t) d t+\mathbb{I}_{\left\{x_{k}(t)=0\right\}} d t+\sqrt{n} \mathbb{I}_{\left\{x_{k}(t)>0\right\}} d w_{k}(t), \quad k=1, \ldots, n, \\
& \text { with } x_{0}(t)=x_{n+1}(t)=0 \quad \text { and } \quad \Delta^{n} x_{k}=n^{2}\left(x_{k+1}+x_{k-1}-2 x_{k}\right)
\end{aligned}
$$

Set

$$
X_{t}^{n}(u)=x_{k}(t), \quad \frac{k-1}{n} \leq u<\frac{k}{n}, \quad u \in[0,1] .
$$

Discrete equation

We discretize only the space variable $u \in[0,1]$ by $\frac{k}{n}, k=1, \ldots, n$.
Set $\pi_{k}^{n}=\mathbb{I}_{\left[\frac{k-1}{n}, \frac{k}{n}\right)}$ and define

$$
w_{k}(t):=\sqrt{n} \int_{0}^{t} \int_{0}^{1}\left(Q \pi_{k}^{n}\right)(u) W(d u, d s)
$$

Consider the following SDE

$$
\begin{aligned}
& d x_{k}(t)=\frac{1}{2} \Delta^{n} x_{k}(t) d t+\mathbb{I}_{\left\{x_{k}(t)=0\right\}} d t+\sqrt{n} \mathbb{I}_{\left\{x_{k}(t)>0\right\}} d w_{k}(t), \quad k=1, \ldots, n, \\
& \text { with } x_{0}(t)=x_{n+1}(t)=0 \quad \text { and } \quad \Delta^{n} x_{k}=n^{2}\left(x_{k+1}+x_{k-1}-2 x_{k}\right)
\end{aligned}
$$

Set

$$
X_{t}^{n}(u)=x_{k}(t), \quad \frac{k-1}{n} \leq u<\frac{k}{n}, \quad u \in[0,1] .
$$

Remark that $X^{n} \geq 0$.

Convergence result

For every $\varphi \in \mathcal{C}^{2}[0,1]$ with $\varphi(0)=\varphi(1)=0$,

$$
M_{t}^{n, \varphi}:=\left\langle X_{t}^{n}, \varphi\right\rangle-\left\langle X_{0}^{n}, \varphi\right\rangle-\frac{1}{2} \int_{0}^{t}\left\langle X_{s}^{n}, \tilde{\Delta}^{n} \varphi\right\rangle d s-\lambda \int_{0}^{t}\left\langle\mathbb{I}_{\left\{X_{s}^{n}=0\right\}}, \varphi\right\rangle d s
$$

is a continuous martingale with quadratic variation

$$
\left[M^{n, \varphi}\right]_{t}=\int_{0}^{t}\left\|Q\left(\mathbb{I}_{\left\{X_{s}^{n}>0\right\}} \varphi\right)\right\|^{2} d s \rightarrow \int_{0}^{t}\left\|Q\left(\sigma_{s} \varphi\right)\right\|^{2} d s=\left[M_{\varphi}\right]_{t}
$$

Equivalently

Convergence result

For every $\varphi \in \mathcal{C}^{2}[0,1]$ with $\varphi(0)=\varphi(1)=0$ ，

$$
\begin{array}{ccc}
M_{t}^{n, \varphi}:= & \left\langle X_{t}^{n}, \varphi\right\rangle-\left\langle X_{0}^{n}, \varphi\right\rangle-\frac{1}{2} \int_{0}^{t}\left\langle X_{s}^{n}, \tilde{\Delta}^{n} \varphi\right\rangle d s-\lambda \int_{0}^{t}\left\langle\mathbb{I}_{\left\{X_{s}^{n}=0\right\}}, \varphi\right\rangle d s \\
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow \\
M_{t}^{\varphi} & :=\left\langle X_{t}, \varphi\right\rangle-\left\langle X_{0}, \varphi\right\rangle & -\frac{1}{2} \int_{0}^{t}\left\langle X_{s}, \varphi^{\prime \prime}\right\rangle d s
\end{array}
$$

is a continuous martingale with quadratic variation

$$
\left[M^{n, \varphi}\right]_{t}=\int_{0}^{t}\left\|Q\left(\mathbb{I}_{\left\{X_{s}^{n}>0\right\}} \varphi\right)\right\|^{2} d s \rightarrow \int_{0}^{t}\left\|Q\left(\sigma_{s} \varphi\right)\right\|^{2} d s=\left[M^{\varphi}\right]_{t}
$$

Equivalently

Convergence result

For every $\varphi \in \mathcal{C}^{2}[0,1]$ with $\varphi(0)=\varphi(1)=0$,

$$
\begin{array}{ccc}
M_{t}^{n, \varphi}:= & \left\langle X_{t}^{n}, \varphi\right\rangle-\left\langle X_{0}^{n}, \varphi\right\rangle-\frac{1}{2} \int_{0}^{t}\left\langle X_{s}^{n}, \tilde{\Delta}^{n} \varphi\right\rangle d s-\lambda \int_{0}^{t}\left\langle\mathbb{I}_{\left\{X_{s}^{n}=0\right\}}, \varphi\right\rangle d s \\
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow \\
M_{t}^{\varphi}: & :=\left\langle X_{t}, \varphi\right\rangle-\left\langle X_{0}, \varphi\right\rangle & -\frac{1}{2} \int_{0}^{t}\left\langle X_{s}, \varphi^{\prime \prime}\right\rangle d s
\end{array}
$$

is a continuous martingale with quadratic variation

$$
\left[M^{n, \varphi}\right]_{t}=\int_{0}^{t}\left\|Q\left(\mathbb{I}_{\left\{X_{s}^{n}>0\right\}} \varphi\right)\right\|^{2} d s \rightarrow \int_{0}^{t}\left\|Q\left(\sigma_{s} \varphi\right)\right\|^{2} d s=\left[M^{\varphi}\right]_{t}
$$

Equivalently

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda\left(1-\sigma_{t}\right)+\sigma_{t} Q \dot{W}, \\
X_{t}(0)=X_{t}(1)=0, \quad X_{0}(u)=g(u) .
\end{gathered}
$$

Proposition

Let X solves the equation

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+a_{t}+\sigma_{t} Q \dot{W}, \\
X_{t}(0)=X_{t}(1)=0, \quad X_{0}(u)=g(u)
\end{gathered}
$$

and $X \geq 0$. Then $\sigma_{t}=\mathbb{I}_{\left\{X_{t}>0\right\}} \sigma_{t}$.

We come back to our equation with undefined coefficients:

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda\left(1-\sigma_{t}\right)+\sigma_{t} Q \dot{W}, \\
X_{t}(0)=X_{t}(1)=0, \quad X_{0}(u)=g(u), \quad X_{t} \geq 0 .
\end{gathered}
$$

By the previous proposition,

$$
\sigma_{t}(u)=\mathbb{I}_{\left\{X_{t}(u)>0\right\}} \sigma_{t}(u)=\lim _{n} \mathbb{I}_{\left\{X_{t}(u)>0\right\}} \mathbb{I}_{\left\{X_{t}^{n}(u)>0\right\}}=\mathbb{I}_{\left\{X_{t}(u)>0\right\}}
$$

We come back to our equation with undefined coefficients：

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} Q \dot{W}, \\
X_{t}(0)=X_{t}(1)=0, \quad X_{0}(u)=g(u), \quad X_{t} \geq 0 .
\end{gathered}
$$

By the previous proposition，

$$
\sigma_{t}(u)=\mathbb{I}_{\left\{X_{t}(u)>0\right\}} \sigma_{t}(u)=\lim _{n} \mathbb{I}_{\left\{X_{t}(u)>0\right\}} \mathbb{I}_{\left\{X_{t}^{n}(u)>0\right\}}=\mathbb{I}_{\left\{X_{t}(u)>0\right\}}
$$

Idea of proof of the key proposition

Proposition

Let X solves the equation

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+a_{t}+\sigma_{t} Q \dot{W}_{t} \\
X_{t}(0)=X_{t}(1)=0, \quad X_{0}(u)=g(u) .
\end{gathered}
$$

and $X \geq 0$ ．Then a．s．$\sigma_{t}=\mathbb{I}_{\left\{X_{t}>0\right\}} \sigma_{t}$ for t－a．e．

Proof

Analog of Ito＇s formula applid to F_{ε} ：

$$
\begin{aligned}
\left\langle F_{\varepsilon}\left(X_{t}\right)-F_{\varepsilon}\left(X_{0}\right), 1\right\rangle & =-\frac{1}{2} \int_{0}^{t}\left\langle F_{\varepsilon}^{\prime \prime}\left(X_{s}\right) \dot{X}_{s}, \dot{X}_{s}\right\rangle d s+\int_{0}^{t}\left\langle F_{\varepsilon}^{\prime}\left(X_{s}\right), a_{s}\right\rangle d s \\
& +\frac{1}{2} \int_{0}^{t}\left\langle Q\left[\sigma_{s} F_{\varepsilon}^{\prime \prime}\left(X_{s}\right) \cdot\right], Q\left[\sigma_{s} \cdot\right]\right\rangle_{H S} d s+M_{F_{\varepsilon}}(t),
\end{aligned}
$$

where

$$
\begin{gathered}
F_{\varepsilon}(x):=\int_{-\infty}^{x} \int_{-\infty}^{y} \psi_{\varepsilon}(r) d y d r, \\
0 \leq F_{\varepsilon}^{\prime}(x) \leq 2 \varepsilon, \quad F_{\varepsilon}^{\prime \prime}(x) \rightarrow \mathbb{I}_{\{0\}}(x)
\end{gathered}
$$

Proof

Analog of Ito＇s formula applid to F_{ε} ：

$$
\begin{aligned}
\left\langle F_{\varepsilon}\left(X_{t}\right)-F_{\varepsilon}\left(X_{0}\right), 1\right\rangle & =-\frac{1}{2} \int_{0}^{t}\left\langle F_{\varepsilon}^{\prime \prime}\left(X_{s}\right) \dot{X}_{s}, \dot{X}_{s}\right\rangle d s+\int_{0}^{t}\left\langle F_{\varepsilon}^{\prime}\left(X_{s}\right), a_{s}\right\rangle d s \\
& +\frac{1}{2} \int_{0}^{t}\left\langle Q\left[\sigma_{s} F_{\varepsilon}^{\prime \prime}\left(X_{s}\right) \cdot\right], Q\left[\sigma_{s} \cdot\right]\right\rangle_{H S} d s+M_{F_{\varepsilon}}(t),
\end{aligned}
$$

where

$$
\begin{gathered}
F_{\varepsilon}(x):=\int_{-\infty}^{x} \int_{-\infty}^{y} \psi_{\varepsilon}(r) d y d r, \\
0 \leq F_{\varepsilon}^{\prime}(x) \leq 2 \varepsilon, \quad F_{\varepsilon}^{\prime \prime}(x) \rightarrow \mathbb{I}_{\{0\}}(x)
\end{gathered}
$$

Hence all green terms $\rightarrow 0$ and red term $\rightarrow \int_{0}^{t}\left\langle Q\left[\sigma_{s} \mathbb{I}_{\left\{X_{s}=0\right\}} \cdot\right], Q\left[\sigma_{s} \cdot\right]\right\rangle_{H S} d s$
\qquad We can replace σ_{s} by $\mathbb{I}_{\left\{X_{s}>0\right\}} \sigma_{s}$

Proof

Analog of Ito's formula applid to F_{ε} :

$$
\begin{aligned}
\left\langle F_{\varepsilon}\left(X_{t}\right)-F_{\varepsilon}\left(X_{0}\right), 1\right\rangle & =-\frac{1}{2} \int_{0}^{t}\left\langle F_{\varepsilon}^{\prime \prime}\left(X_{s}\right) \dot{X}_{s}, \dot{X}_{s}\right\rangle d s+\int_{0}^{t}\left\langle F_{\varepsilon}^{\prime}\left(X_{s}\right), a_{s}\right\rangle d s \\
& +\frac{1}{2} \int_{0}^{t}\left\langle Q\left[\sigma_{s} F_{\varepsilon}^{\prime \prime}\left(X_{s}\right) \cdot\right], Q\left[\sigma_{s} \cdot\right]\right\rangle_{H S} d s+M_{F_{\varepsilon}}(t),
\end{aligned}
$$

where

$$
\begin{gathered}
F_{\varepsilon}(x):=\int_{-\infty}^{x} \int_{-\infty}^{y} \psi_{\varepsilon}(r) d y d r, \\
0 \leq F_{\varepsilon}^{\prime}(x) \leq 2 \varepsilon, \quad F_{\varepsilon}^{\prime \prime}(x) \rightarrow \mathbb{I}_{\{0\}}(x)
\end{gathered}
$$

Hence all green terms $\rightarrow 0$ and red term $\rightarrow \int_{0}^{t}\left\langle Q\left[\sigma_{s} \mathbb{I}_{\left\{X_{s}=0\right\}} \cdot\right], Q\left[\sigma_{s} \cdot\right]\right\rangle_{H S} d s=0$
\Longrightarrow We can replace σ_{s} by $\mathbb{I}_{\left\{X_{s}>0\right\}} \sigma_{s}$

Open problem and references

Open problems：

－Is a solution to the equation unique？
－Does the solution of the equation with the identity operator Q exists？
－What is the invariant measure for the dynamics？
－How much time does the equation spend at zero？

Vitalii Konarovskyi， Sticky－Reflected Stochastic Heat Equation Driven by Colored Noise Ukrain．Math．J．，Vol．72，no．9， 2021
（arXiv：2005．11773）
圊 Vitalii Konarovskyi，
Coalescing－Fragmentating Wasserstein Dynamics：particle approach （arXiv：1711．03011）

Thank you for your attention！

