Sticky-reflected stochastic heat equation driven by colored noise

Vitalii Konarovskyi
Hamburg University/Leipzig University/
Institute of Mathematics of NAS of Ukraine
International Frontiers of Mathematics, Changchun - 2021

UNIVERSITAT LEIPZIG

Introduction of the equation

Sticky-reflected Brownian motion

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t) \\
x(0) & =x_{0} \geq 0
\end{aligned}
$$

where $\lambda>0$ and w is an 1-dim Brownian motion.

Sticky-reflected Brownian motion

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t) \\
x(0) & =x_{0} \geq 0
\end{aligned}
$$

where $\lambda>0$ and w is an 1-dim Brownian motion.

The equation admits only a weak solution which is unique in law (Engelbert and Peskir, 2014)

Stochastic heat equation

$$
\begin{aligned}
\frac{\partial X_{t}}{\partial t} & =\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\dot{W}_{t}, \quad t>0, \quad u \in(0,1) \\
X_{0} & =g, \quad X_{t}(0)=X_{t}(1)=0
\end{aligned}
$$

where \dot{W} is a space-time white noise and $g \in C[0,1]$.

Definition of weak solution

is a martingale with quadratic variation

Stochastic heat equation

$$
\begin{aligned}
\frac{\partial X_{t}}{\partial t} & =\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\dot{W}_{t}, \quad t>0, \quad u \in(0,1) \\
X_{0} & =g, \quad X_{t}(0)=X_{t}(1)=0
\end{aligned}
$$

where \dot{W} is a space-time white noise and $g \in C[0,1]$.

Definition of weak solution

A continuous process $X:[0, \infty) \times[0,1] \rightarrow \mathbb{R}$ is called a weak solution to the SHE if for any $\varphi \in C^{2}[0,1]$ with $\varphi(0)=\varphi(1)=0$

$$
M_{t}^{\varphi}:=\left\langle X_{t}, \varphi\right\rangle-\left\langle X_{0}, \varphi\right\rangle-\frac{1}{2} \int_{0}^{t}\left\langle X_{s}, \varphi^{\prime \prime}\right\rangle d s
$$

is a martingale with quadratic variation

$$
\left[M^{\varphi}\right]_{t}=\int_{0}^{t}\|\varphi\|_{L_{2}}^{2} d s
$$

where $\left\langle X_{t}, \varphi\right\rangle=\int_{0}^{1} X_{t}(u) \varphi(u) d u$.
(Well-posedness - Funaki, 1983)

Sticky-reflected stochastic heat equation

Stochastic heat equation on $[0,1]$

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\dot{W}_{t} \\
X_{0}=g, \quad X_{t}(0)=X_{t}(1)=0
\end{gathered}
$$

Sticky-reflected stochastic heat equation

Stochastic heat equation on $[0,1]$

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\dot{W}_{t} \\
X_{0}=g, \quad X_{t}(0)=X_{t}(1)=0
\end{gathered}
$$

Sticky-reflected Brownian motion

$$
\begin{aligned}
d x(t) & =d w(t), \\
x(0) & =x_{0} \geq 0,
\end{aligned}
$$

Sticky-reflected stochastic heat equation

Stochastic heat equation on $[0,1]$

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\dot{W}_{t} \\
X_{0}=g, \quad X_{t}(0)=X_{t}(1)=0
\end{gathered}
$$

Sticky-reflected Brownian motion

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+d w(t), \\
x(0) & =x_{0} \geq 0,
\end{aligned}
$$

where $\lambda>0$

Sticky-reflected stochastic heat equation

Stochastic heat equation on $[0,1]$

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\dot{W}_{t} \\
X_{0}=g \geq 0, \quad X_{t}(0)=X_{t}(1)=0
\end{gathered}
$$

Sticky-reflected Brownian motion

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t), \\
x(0) & =x_{0} \geq 0,
\end{aligned}
$$

where $\lambda>0$

Sticky－reflected stochastic heat equation

Stochastic heat equation on $[0,1]$

$$
\begin{aligned}
& \frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\dot{W}_{t} \\
& X_{0}=g \geq 0, \quad X_{t}(0)=X_{t}(1)=0
\end{aligned}
$$

Sticky－reflected Brownian motion

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t), \\
x(0) & =x_{0} \geq 0,
\end{aligned}
$$

where $\lambda>0$

Sticky－reflected stochastic heat equation

Sticky－reflected stochastic Stochastic heat equation on $[0,1]$

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} \dot{W}_{t} \\
X_{0}=g \geq 0, \quad X_{t}(0)=X_{t}(1)=0
\end{gathered}
$$

Sticky－reflected Brownian motion

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t), \\
x(0) & =x_{0} \geq 0,
\end{aligned}
$$

where $\lambda>0$

Reflected stochastic heat equation

Sticky-reflected SHE:

$$
\begin{aligned}
\frac{\partial X_{t}}{\partial t} & =\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} \dot{W}_{t} \\
X_{0} & =g \geq 0, \quad X_{t}(0)=X_{t}(1)=0
\end{aligned}
$$

Reflected SHE (D. Nulart and É. Pardoux '92)

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+L_{t}+\dot{W}_{t} \\
X_{0}=g \geq 0, \quad X_{t}(0)=X_{t}(1)=0 \\
\int_{0}^{\infty} \int_{0}^{1} X_{t}(u) d L_{t}(u)=0, \quad X_{t} \geq 0
\end{gathered}
$$

Reflected stochastic heat equation

Sticky-reflected SHE:

$$
\begin{aligned}
\frac{\partial X_{t}}{\partial t} & =\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} \dot{W}_{t} \\
X_{0} & =g \geq 0, \quad X_{t}(0)=X_{t}(1)=0
\end{aligned}
$$

Reflected SHE (D. Nulart and É. Pardoux '92)

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+L_{t}+\dot{W}_{t} \\
X_{0}=g \geq 0, \quad X_{t}(0)=X_{t}(1)=0 \\
\int_{0}^{\infty} \int_{0}^{1} X_{t}(u) d L_{t}(u)=0, \quad X_{t} \geq 0
\end{gathered}
$$

There exists a unique continuous process $X:[0,1] \times[0, \infty) \rightarrow \mathbb{R}$ and a measure (local time) L on $[0,1] \times[0, \infty)$ satisfying the reflected SHE.
(D. Nulart and É. Pardoux '92)

Formulation of the main result

Sticky－reflected SHE：

$$
\begin{aligned}
\frac{\partial X_{t}}{\partial t} & =\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} \dot{W}_{t} \\
X_{0} & =g \geq 0, \quad X_{t}(0)=X_{t}(1)=0
\end{aligned}
$$

Solution to sticky－reflected SHE
is a martingale with quadratic variation

Formulation of the main result

Sticky-reflected SHE:

$$
\begin{aligned}
\frac{\partial X_{t}}{\partial t} & =\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} Q \dot{W}_{t} \\
X_{0} & =g \geq 0, \quad X_{t}(0)=X_{t}(1)=0
\end{aligned}
$$

where Q is non-negative definite self-adjoint Hilbert-Schmidt operator in $L_{2}[0,1]$

Solution to sticky-reflected SHE

is a martingale with quadratic variation

Formulation of the main result

Sticky－reflected SHE：

$$
\begin{aligned}
\frac{\partial X_{t}}{\partial t} & =\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} Q \dot{W}_{t} \\
X_{0} & =g \geq 0, \quad X_{t}(0)=X_{t}(1)=0
\end{aligned}
$$

where Q is non－negative definite self－adjoint Hilbert－Schmidt operator in $L_{2}[0,1]$

Solution to sticky－reflected SHE

A continuous process $X:[0, \infty) \times[0,1] \rightarrow \mathbb{R}$ is called a weak solution to the sticky－reflected SHE if for any $\varphi \in C^{2}[0,1]$ with $\varphi(0)=\varphi(1)=0$

$$
M_{t}^{\varphi}:=\left\langle X_{t}, \varphi\right\rangle-\left\langle X_{0}, \varphi\right\rangle-\frac{1}{2} \int_{0}^{t}\left\langle X_{s}, \varphi^{\prime \prime}\right\rangle d s-\int_{0}^{t}\left\langle\lambda \mathbb{I}_{\left\{X_{s}=0\right\}}, \varphi\right\rangle d s
$$

is a martingale with quadratic variation

$$
\left[M^{\varphi}\right]_{t}=\int_{0}^{t}\left\|Q\left(\mathbb{I}_{\left\{X_{s}>0\right\}} \varphi\right)\right\|_{L_{2}}^{2} d s
$$

Formulation of the main result

Let $\left\{e_{k}, k \geq 1\right\}$ and $\left\{\mu_{k}, k \geq 1\right\}$ be eigenvectors and eigenvalues of Q ．Define

$$
\chi^{2}:=\sum_{k=1}^{\infty} \mu_{k}^{2} e_{k}^{2} .
$$

Formulation of the main result

Let $\left\{e_{k}, k \geq 1\right\}$ and $\left\{\mu_{k}, k \geq 1\right\}$ be eigenvectors and eigenvalues of Q. Define

$$
\chi^{2}:=\sum_{k=1}^{\infty} \mu_{k}^{2} e_{k}^{2} .
$$

Theorem

If $\chi^{2}>0$ a.e., then the sticky-reflected SHE admits a weak solution.

Meaning of assumtion $\chi^{2}>0$

The equation

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t \\
x(0) & =0
\end{aligned}
$$

has no solution
$\chi^{2}=\sum_{k=1}^{\infty} \mu_{k}^{2} e_{k}^{2}>0$ means that the solution X to the equation feels a noise at any point of $[0,1]$.

Meaning of assumtion $\chi^{2}>0$

The equation

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t) \\
x(0) & =0
\end{aligned}
$$

has no solution a weak solution

feels a noise at any point of $[0,1]$.

Meaning of assumtion $\chi^{2}>0$

The equation

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t) \\
x(0) & =0
\end{aligned}
$$

has no solution a weak solution
$\chi^{2}=\sum_{k=1}^{\infty} \mu_{k}^{2} e_{k}^{2}>0$ means that the solution X to the equation

$$
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} Q \dot{W}_{t}
$$

feels a noise at any point of $[0,1]$.

Description of the idea of construction of solution
using the equation

$$
d x(t)=\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t)
$$

Step I. Approximation sequence

Consider the SDE for sticky-reflected BM:

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t), \\
x(0) & =x_{0} \geq 0 .
\end{aligned}
$$

We approximate its solution by the solutions to the SDE

which have non-negative strong solutons $x_{n}(t) \geq 0$.

Step I. Approximation sequence

Consider the SDE for sticky-reflected BM:

$$
\begin{aligned}
d x(t) & =\lambda \mathbb{I}_{\{x(t)=0\}} d t+\mathbb{I}_{\{x(t)>0\}} d w(t) \\
x(0) & =x_{0} \geq 0
\end{aligned}
$$

We approximate its solution by the solutions to the SDE

$$
\begin{aligned}
d x_{n}(t) & =\lambda\left(1-\kappa_{n}^{2}\left(x_{n}(t)\right)\right) d t+\kappa_{n}\left(x_{n}(t)\right) d w(t), \\
x_{n}(0) & =x_{0} .
\end{aligned}
$$

which have non-negative strong solutons $x_{n}(t) \geq 0$.

$$
\begin{aligned}
\kappa_{n}(y) & \rightarrow \mathbb{I}_{\{y>0\}}, \\
1-\kappa_{n}^{2}(y) & \rightarrow 1-\mathbb{I}_{\{y>0\}}^{2}=\mathbb{I}_{\{y=0\}} \\
\text { for } y \geq 0, \text { as } n & \rightarrow \infty
\end{aligned}
$$

Problem of approximation

Once can show that $\left\{x_{n}, n \geq 1\right\}$ is tight in $C[0, \infty) \Longrightarrow$

$$
x_{n} \rightarrow x \text { in } C[0, \infty)
$$

along a subsequence.

Problem of approximation

Once can show that $\left\{x_{n}, n \geq 1\right\}$ is tight in $C[0, \infty) \Longrightarrow$

$$
x_{n} \rightarrow x \text { in } C[0, \infty)
$$

along a subsequence.

But

$$
\begin{array}{cc}
x_{n}(t)=x_{0}+\int_{0}^{t} \lambda\left(1-\kappa_{n}^{2}\left(x_{n}(s)\right)\right) d s+\int_{0}^{t} \kappa_{n}\left(x_{n}(s)\right) d w(s), \\
\downarrow \\
\downarrow & \downarrow \\
x(t)=x_{0} \quad+\int_{0}^{t} \lambda \mathbb{I}_{\{x(s)=0\}} d s \quad+\int_{0}^{t} \mathbb{I}_{\{x(s)>0\}} d w(s)
\end{array}
$$

Step II. Convergence in an appropriate space

$$
x_{n}(t)=x_{0}+\int_{0}^{t} \lambda\left(1-\kappa_{n}^{2}\left(x_{n}(s)\right)\right) d s+\int_{0}^{t} \kappa_{n}\left(x_{n}(s)\right) d w(s),
$$

Using tighntess argument, one has

$$
\begin{aligned}
& x_{n}(t) \rightarrow x(t) \\
& a_{n}(t):=\int_{0}^{t} \lambda\left(1-\kappa_{n}^{2}\left(x_{n}(s)\right)\right) d s \rightarrow a(t) \\
& \eta_{n}(t):=\int_{0}^{t} \kappa_{n}\left(x_{n}(s)\right) d w(s) \rightarrow \eta(t) \\
& {\left[\eta_{n}\right]_{t}=\int_{0}^{t} \kappa_{n}^{2}\left(x_{n}(s)\right) d s \rightarrow \rho(t)}
\end{aligned}
$$

in $C[0, \infty)$ in distribution along a subsequence.

Step III. Properties of the limit process

$$
\begin{gathered}
x_{n}(t) \rightarrow x(t), \quad a_{n}(t):=\int_{0}^{t} \lambda\left(1-\kappa_{n}^{2}\left(x_{n}(s)\right)\right) d s \rightarrow a(t) \\
\eta_{n}(t):=\int_{0}^{t} \kappa_{n}\left(x_{n}(s)\right) d w(s) \rightarrow \eta(t), \quad\left[\eta_{n}\right]_{t}=\int_{0}^{t} \kappa_{n}^{2}\left(x_{n}(s)\right) d s \rightarrow \rho(t)
\end{gathered}
$$

We remark that

- $x(t)=x_{0}+a(t)+\eta(t) \geq 0$
- η is a continuous martingale
- $[\eta(t)]_{t}=\rho(t)$
- $\kappa_{n}^{2}\left(x_{n}\right)$ is tight in the weak topology of $L_{2}[0, T]$, therefore,

$$
\kappa_{n}^{2}\left(x_{n}\right) \rightarrow \dot{\rho} \in L_{2}[0, T] \quad \text { and } \quad \rho(t)=\int_{0}^{t} \dot{\rho}(s) d s
$$

- $a(t)=\lambda t-\lambda \rho(t)=\int_{0}^{t} \lambda(1-\dot{\rho}(s)) d s$

Step III. Properties of the limit process

$$
\begin{gathered}
x_{n}(t) \rightarrow x(t), \quad a_{n}(t):=\int_{0}^{t} \lambda\left(1-\kappa_{n}^{2}\left(x_{n}(s)\right)\right) d s \rightarrow a(t) \\
\eta_{n}(t):=\int_{0}^{t} \kappa_{n}\left(x_{n}(s)\right) d w(s) \rightarrow \eta(t), \quad\left[\eta_{n}\right]_{t}=\int_{0}^{t} \kappa_{n}^{2}\left(x_{n}(s)\right) d s \rightarrow \rho(t)
\end{gathered}
$$

We remark that

- $x(t)=x_{0}+a(t)+\eta(t) \geq 0$
- η is a continuous martingale
- $[\eta(t)]_{t}=\rho(t)$
- $\kappa_{n}^{2}\left(x_{n}\right)$ is tight in the weak topology of $L_{2}[0, T]$, therefore,

$$
\kappa_{n}^{2}\left(x_{n}\right) \rightarrow \dot{\rho} \in L_{2}[0, T] \quad \text { and } \quad \rho(t)=\int_{0}^{t} \dot{\rho}(s) d s
$$

- $a(t)=\lambda t-\lambda \rho(t)=\int_{0}^{t} \lambda(1-\dot{\rho}(s)) d s$

We need to show that $\dot{\rho}(s)=\mathbb{I}_{\{x(s)>0\}}$!

Step III. Properties of the limit process

$$
\begin{gathered}
x_{n}(t) \rightarrow x(t), \quad a_{n}(t):=\int_{0}^{t} \lambda\left(1-\kappa_{n}^{2}\left(x_{n}(s)\right)\right) d s \rightarrow a(t) \\
\eta_{n}(t):=\int_{0}^{t} \kappa_{n}\left(x_{n}(s)\right) d w(s) \rightarrow \eta(t), \quad\left[\eta_{n}\right]_{t}=\int_{0}^{t} \kappa_{n}^{2}\left(x_{n}(s)\right) d s \rightarrow \rho(t)
\end{gathered}
$$

We remark that

- $x(t)=x_{0}+a(t)+\eta(t) \geq 0$
- η is a continuous martingale
- $[\eta(t)]_{t}=\rho(t)=\int_{0}^{t} \mathbb{I}_{\{x(s)>0\}} d s$
- $\kappa_{n}^{2}\left(x_{n}\right)$ is tight in the weak topology of $L_{2}[0, T]$, therefore,

$$
\kappa_{n}^{2}\left(x_{n}\right) \rightarrow \dot{\rho} \in L_{2}[0, T] \quad \text { and } \quad \rho(t)=\int_{0}^{t} \dot{\rho}(s) d s
$$

- $a(t)=\lambda t-\lambda \rho(t)=\int_{0}^{t} \lambda(1-\dot{\rho}(s)) d s$

We need to show that $\dot{\rho}(s)=\mathbb{I}_{\{x(s)>0\}}$!

Step III．Properties of the limit process

$$
\begin{gathered}
x_{n}(t) \rightarrow x(t), \quad a_{n}(t):=\int_{0}^{t} \lambda\left(1-\kappa_{n}^{2}\left(x_{n}(s)\right)\right) d s \rightarrow a(t) \\
\eta_{n}(t):=\int_{0}^{t} \kappa_{n}\left(x_{n}(s)\right) d w(s) \rightarrow \eta(t), \quad\left[\eta_{n}\right]_{t}=\int_{0}^{t} \kappa_{n}^{2}\left(x_{n}(s)\right) d s \rightarrow \rho(t)
\end{gathered}
$$

We remark that
－$x(t)=x_{0}+a(t)+\eta(t) \geq 0$
－η is a continuous martingale
－$[\eta(t)]_{t}=\rho(t)=\int_{0}^{t} \mathbb{I}_{\{x(s)>0\}} d s$
－$\kappa_{n}^{2}\left(x_{n}\right)$ is tight in the weak topology of $L_{2}[0, T]$ ，therefore，

$$
\kappa_{n}^{2}\left(x_{n}\right) \rightarrow \dot{\rho} \in L_{2}[0, T] \quad \text { and } \quad \rho(t)=\int_{0}^{t} \dot{\rho}(s) d s
$$

－$a(t)=\lambda t-\lambda \rho(t)=\int_{0}^{t} \lambda(1-\dot{\rho}(s)) d s=\int_{0}^{t} \lambda\left(1-\mathbb{I}_{\{x(t)>0\}}\right) d s=$ $\int_{0}^{t} \lambda \mathbb{I}_{\{x(s)=0\}} d s$

We need to show that $\dot{\rho}(s)=\mathbb{I}_{\{x(s)>0\}}$ ！

Step III. Properties of the limit process

$$
\begin{gathered}
x_{n}(t) \rightarrow x(t), \quad a_{n}(t):=\int_{0}^{t} \lambda\left(1-\kappa_{n}^{2}\left(x_{n}(s)\right)\right) d s \rightarrow a(t) \\
\eta_{n}(t):=\int_{0}^{t} \kappa_{n}\left(x_{n}(s)\right) d w(s) \rightarrow \eta(t), \quad\left[\eta_{n}\right]_{t}=\int_{0}^{t} \kappa_{n}^{2}\left(x_{n}(s)\right) d s \rightarrow \rho(t)
\end{gathered}
$$

We remark that

- $x(t)=x_{0}+a(t)+\eta(t)=x_{0}+\int_{0}^{t} \lambda \mathbb{I}_{\{x(s)=0\}} d s+\int_{0}^{t} \mathbb{I}_{\{x(s)>0\}} d \tilde{w}(s)$
- η is a continuous martingale
- $[\eta(t)]_{t}=\rho(t)=\int_{0}^{t} \mathbb{I}_{\{x(s)>0\}} d s$
- $\kappa_{n}^{2}\left(x_{n}\right)$ is tight in the weak topology of $L_{2}[0, T]$, therefore,

$$
\kappa_{n}^{2}\left(x_{n}\right) \rightarrow \dot{\rho} \in L_{2}[0, T] \quad \text { and } \quad \rho(t)=\int_{0}^{t} \dot{\rho}(s) d s
$$

- $a(t)=\lambda t-\lambda \rho(t)=\int_{0}^{t} \lambda(1-\dot{\rho}(s)) d s=\int_{0}^{t} \lambda\left(1-\mathbb{I}_{\{x(t)>0\}}\right) d s=$ $\int_{0}^{t} \lambda \mathbb{I}_{\{x(s)=0\}} d s$

We need to show that $\dot{\rho}(s)=\mathbb{I}_{\{x(s)>0\}}$!

Key observation

Lemma

If x is a continuous non-negative semimartingale with q.v.

$$
[x]_{t}=\int_{0}^{t} \sigma^{2}(s) d s
$$

then

$$
\sigma^{2}(s)=\sigma^{2}(s) \mathbb{I}_{\{x(s)>0\}} \quad s \text {-a.e. }
$$

Proof.

$$
\begin{aligned}
\int_{0}^{t} \sigma^{2}(s) \mathbb{I}_{\{x(s)=0\}} d s & =\int_{0}^{t} \mathbb{I}_{\{0\}}(x(s)) d[x]_{s} \\
& =\int_{-\infty}^{+\infty} \mathbb{I}_{\{0\}}(x) L_{t}^{x} d x=0, \quad t \geq 0
\end{aligned}
$$

whre L_{t}^{x} is the local time of x.

Step IV. Identification of quadratic variation

Remind

- $x(t)=x_{0}+a(t)+\eta(t) \geq 0$ is a continuous semimartingale
- $[x]_{t}=[\eta]_{t}=\int_{0}^{t} \dot{\rho}(s) d s$
- $\kappa_{n}^{2}\left(x_{n}\right) \rightarrow \dot{\rho}$ in a weak topology of $L_{2}[0,1]$ along a subsequence

Step IV. Identification of quadratic variation

Remind

- $x(t)=x_{0}+a(t)+\eta(t) \geq 0$ is a continuous semimartingale
- $[x]_{t}=[\eta]_{t}=\int_{0}^{t} \dot{\rho}(s) d s$
- $\kappa_{n}^{2}\left(x_{n}\right) \rightarrow \dot{\rho}$ in a weak topology of $L_{2}[0,1]$ along a subsequence Since $\dot{\rho}=\dot{\rho} \mathbb{I}_{\{x(s)>0\}}$ and

$$
\begin{aligned}
& \quad \kappa_{n}^{2}\left(y_{n}\right) \mathbb{I}_{\{y>0\}} \rightarrow \mathbb{I}_{\{y>0\}}, \\
& \text { as } y_{n} \rightarrow y \text {, we get }
\end{aligned}
$$

Step IV. Identification of quadratic variation

Remind

- $x(t)=x_{0}+a(t)+\eta(t) \geq 0$ is a continuous semimartingale
- $[x]_{t}=[\eta]_{t}=\int_{0}^{t} \dot{\rho}(s) d s$
- $\kappa_{n}^{2}\left(x_{n}\right) \rightarrow \dot{\rho}$ in a weak topology of $L_{2}[0,1]$ along a subsequence Since $\dot{\rho}=\dot{\rho} \mathbb{I}_{\{x(s)>0\}}$ and

$$
\begin{aligned}
\int_{0}^{t} \dot{\rho}(s) d t & =\int_{0}^{t} \dot{\rho} \mathbb{I}_{\{x(s)>0\}} d s=\lim _{n} \int_{0}^{t} \kappa_{n}^{2}\left(x_{n}(s)\right) \mathbb{I}_{\{x(s)>0\}} d s \\
& =\int_{0}^{t} \mathbb{I}_{\{x(s)>0\}} d s, \quad t>0
\end{aligned}
$$

Proof of existence of solution to

sticky-reflected SHE

$$
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\lambda \mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} Q \dot{W}_{t}
$$

Discrete equation

We discretize only the space variable $u \in[0,1]$ by $\frac{k}{n}, k=1, \ldots, n$.

and defıne

Consider the following SDE

Discrete equation

We discretize only the space variable $u \in[0,1]$ by $\frac{k}{n}, k=1, \ldots, n$.
Set $\pi_{k}^{n}=\mathbb{I}_{\left[\frac{k-1}{n}, \frac{k}{n}\right)}$ and define

$$
w_{k}(t):=\sqrt{n} \int_{0}^{t} \int_{0}^{1}\left(Q \pi_{k}^{n}\right)(u) W(d u, d s)
$$

Consider the following SDE
$d x_{k}(t)=\frac{1}{2} \Delta^{n} x_{k}(t) d t+\mathbb{I}_{\left\{x_{k}(t)=0\right\}} d t+\sqrt{n} \mathbb{I}_{\left\{x_{k}(t)>0\right\}} d w_{k}(t), \quad k=1, \ldots, n$,
with $x_{0}(t)=x_{n+1}(t)=0 \quad$ and $\quad \Delta^{n} x_{k}=n^{2}\left(x_{k+1}+x_{k-1}-2 x_{k}\right)$

Discrete equation

We discretize only the space variable $u \in[0,1]$ by $\frac{k}{n}, k=1, \ldots, n$.
Set $\pi_{k}^{n}=\mathbb{I}_{\left[\frac{k-1}{n}, \frac{k}{n}\right)}$ and define

$$
w_{k}(t):=\sqrt{n} \int_{0}^{t} \int_{0}^{1}\left(Q \pi_{k}^{n}\right)(u) W(d u, d s)
$$

Consider the following SDE

$$
\begin{aligned}
& d x_{k}(t)=\frac{1}{2} \Delta^{n} x_{k}(t) d t+\mathbb{I}_{\left\{x_{k}(t)=0\right\}} d t+\sqrt{n} \mathbb{I}_{\left\{x_{k}(t)>0\right\}} d w_{k}(t), \quad k=1, \ldots, n, \\
& \text { with } x_{0}(t)=x_{n+1}(t)=0 \quad \text { and } \quad \Delta^{n} x_{k}=n^{2}\left(x_{k+1}+x_{k-1}-2 x_{k}\right)
\end{aligned}
$$

Set

$$
X_{t}^{n}(u)=x_{k}(t), \quad \frac{k-1}{n} \leq u<\frac{k}{n}, \quad u \in[0,1] .
$$

Discrete equation

We discretize only the space variable $u \in[0,1]$ by $\frac{k}{n}, k=1, \ldots, n$.
Set $\pi_{k}^{n}=\mathbb{I}_{\left[\frac{k-1}{n}, \frac{k}{n}\right)}$ and define

$$
w_{k}(t):=\sqrt{n} \int_{0}^{t} \int_{0}^{1}\left(Q \pi_{k}^{n}\right)(u) W(d u, d s)
$$

Consider the following SDE

$$
\begin{aligned}
& d x_{k}(t)=\frac{1}{2} \Delta^{n} x_{k}(t) d t+\mathbb{I}_{\left\{x_{k}(t)=0\right\}} d t+\sqrt{n} \mathbb{I}_{\left\{x_{k}(t)>0\right\}} d w_{k}(t), \quad k=1, \ldots, n, \\
& \text { with } x_{0}(t)=x_{n+1}(t)=0 \quad \text { and } \quad \Delta^{n} x_{k}=n^{2}\left(x_{k+1}+x_{k-1}-2 x_{k}\right)
\end{aligned}
$$

Set

$$
X_{t}^{n}(u)=x_{k}(t), \quad \frac{k-1}{n} \leq u<\frac{k}{n}, \quad u \in[0,1] .
$$

Remark that $X^{n} \geq 0$.

Convergence result

For every $\varphi \in \mathcal{C}^{2}[0,1]$ with $\varphi(0)=\varphi(1)=0$ ，

$$
\left\langle X_{t}^{n}, \varphi\right\rangle=\left\langle X_{0}^{n}, \varphi\right\rangle+\frac{1}{2} \int_{0}^{t}\left\langle X_{s}^{n}, \tilde{\Delta}^{n} \varphi\right\rangle d s+\int_{0}^{t}\left\langle\mathbb{I}_{\left\{X_{s}^{n}=0\right\}}, \varphi\right\rangle d s+B_{\varphi}^{n}
$$

where B_{φ}^{n} is a continuous martingale with $\left[B_{\varphi}\right]_{t}=\left\|Q\left(\mathbb{I}_{\left\{X_{t}^{n}>0\right\}} \varphi\right)\right\|^{2}$ ．

Convergence result

For every $\varphi \in \mathcal{C}^{2}[0,1]$ with $\varphi(0)=\varphi(1)=0$,

$$
\left\langle X_{t}^{n}, \varphi\right\rangle=\left\langle X_{0}^{n}, \varphi\right\rangle+\frac{1}{2} \int_{0}^{t}\left\langle X_{s}^{n}, \tilde{\Delta}^{n} \varphi\right\rangle d s+\int_{0}^{t}\left\langle\mathbb{I}_{\left\{X_{s}^{n}=0\right\}}, \varphi\right\rangle d s+B_{\varphi}^{n}
$$

where B_{φ}^{n} is a continuous martingale with $\left[B_{\varphi}\right]_{t}=\left\|Q\left(\mathbb{I}_{\left\{X_{t}^{n}>0\right\}} \varphi\right)\right\|^{2}$.
There exists a subsequence $n_{k}, k \geq 1$, and a continuous process X such that

- $X^{n_{k}}(u, t) \rightarrow X(u, t), \forall u, t ;$
- $\tilde{\Delta}^{n_{k}} \varphi \rightarrow \varphi^{\prime \prime}$;
- $\mathbb{I}_{\left\{X_{t}^{n_{k}}>0\right\}} \rightarrow \sigma_{t}$;
- $\mathbb{I}_{\left\{X_{t}^{\left.n_{k}=0\right\}}\right.}=1-\mathbb{I}_{\left\{X_{t}^{n_{k}}>0\right\}} \rightarrow 1-\sigma_{t}$.

Convergence result

For every $\varphi \in \mathcal{C}^{2}[0,1]$ with $\varphi(0)=\varphi(1)=0$ ，

$$
\left\langle X_{t}^{n}, \varphi\right\rangle=\left\langle X_{0}^{n}, \varphi\right\rangle+\frac{1}{2} \int_{0}^{t}\left\langle X_{s}^{n}, \tilde{\Delta}^{n} \varphi\right\rangle d s+\int_{0}^{t}\left\langle\mathbb{I}_{\left\{X_{s}^{n}=0\right\}}, \varphi\right\rangle d s+B_{\varphi}^{n}
$$

where B_{φ}^{n} is a continuous martingale with $\left[B_{\varphi}\right]_{t}=\left\|Q\left(\mathbb{I}_{\left\{X_{t}^{n}>0\right\}} \varphi\right)\right\|^{2}$ ．
There exists a subsequence $n_{k}, k \geq 1$ ，and a continuous process X such that
－$X^{n_{k}}(u, t) \rightarrow X(u, t), \forall u, t ;$
－$\tilde{\Delta}^{n_{k}} \varphi \rightarrow \varphi^{\prime \prime}$ ；
－ $\mathbb{I}_{\left\{X_{t}^{n_{k}}>0\right\}} \rightarrow \sigma_{t}$ ；
－ $\mathbb{I}_{\left\{X_{t}^{\left.n_{k}=0\right\}}\right.}=1-\mathbb{I}_{\left\{X_{t}^{n_{k}}>0\right\}} \rightarrow 1-\sigma_{t}$.
Hence

$$
\left\langle X_{t}, \varphi\right\rangle=\langle g, \varphi\rangle+\frac{1}{2} \int_{0}^{t}\left\langle X_{s}, \varphi^{\prime \prime}\right\rangle d s+\int_{0}^{t}\left\langle\left(1-\sigma_{s}\right), \varphi\right\rangle d s+B_{\varphi}
$$

where B_{φ} is a continuous martingla with $\left[B_{\varphi}\right]_{t}=\left\|Q\left(\sigma_{t} \varphi\right)\right\|^{2}$ ．

Convergence result

For every $\varphi \in \mathcal{C}^{2}[0,1]$ with $\varphi(0)=\varphi(1)=0$,

$$
\left\langle X_{t}^{n}, \varphi\right\rangle=\left\langle X_{0}^{n}, \varphi\right\rangle+\frac{1}{2} \int_{0}^{t}\left\langle X_{s}^{n}, \tilde{\Delta}^{n} \varphi\right\rangle d s+\int_{0}^{t}\left\langle\mathbb{I}_{\left\{X_{s}^{n}=0\right\}}, \varphi\right\rangle d s+B_{\varphi}^{n}
$$

where B_{φ}^{n} is a continuous martingale with $\left[B_{\varphi}\right]_{t}=\left\|Q\left(\mathbb{I}_{\left\{X_{t}^{n}>0\right\}} \varphi\right)\right\|^{2}$.
There exists a subsequence $n_{k}, k \geq 1$, and a continuous process X such that

- $X^{n_{k}}(u, t) \rightarrow X(u, t), \forall u, t ;$
- $\tilde{\Delta}^{n_{k}} \varphi \rightarrow \varphi^{\prime \prime}$;
- $\mathbb{I}_{\left\{X_{t}^{n_{k}}>0\right\}} \rightarrow \sigma_{t}$;
- $\mathbb{I}_{\left\{X_{t}^{\left.n_{k}=0\right\}}\right.}=1-\mathbb{I}_{\left\{X_{t}^{n_{k}}>0\right\}} \rightarrow 1-\sigma_{t}$.

Equivalently

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+(1-\sigma)+\sigma Q \dot{W} \\
X_{t}(0)=X_{t}(1)=0, \quad X_{0}(u)=g(u)
\end{gathered}
$$

Proposition

Let X solves the equation

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+a+\sigma Q \dot{W}, \\
X_{t}(0)=X_{t}(1)=0, \quad X_{0}(u)=g(u) .
\end{gathered}
$$

and $X \geq 0$. Then $\sigma=\mathbb{I}_{\left\{X_{t}>0\right\}} \sigma$.

By the previous proposition,

$$
\sigma_{t}(u)=\mathbb{I}_{\left\{X_{t}(u)>0\right\}} \sigma_{t}(u)=\lim _{k \rightarrow \infty} \mathbb{I}_{\left\{X_{t}(u)>0\right\}} \mathbb{I}_{\left\{X_{t}^{n_{k}}(u)>0\right\}}=\mathbb{I}_{\left\{X_{t}(u)>0\right\}}
$$

Hence

$$
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+(1-\sigma)+\sigma Q \dot{W}
$$

By the previous proposition,

$$
\sigma_{t}(u)=\mathbb{I}_{\left\{X_{t}(u)>0\right\}} \sigma_{t}(u)=\lim _{k \rightarrow \infty} \mathbb{I}_{\left\{X_{t}(u)>0\right\}} \mathbb{I}_{\left\{X_{t}^{n_{k}}(u)>0\right\}}=\mathbb{I}_{\left\{X_{t}(u)>0\right\}}
$$

Hence

$$
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+\mathbb{I}_{\left\{X_{t}=0\right\}}+\mathbb{I}_{\left\{X_{t}>0\right\}} Q \dot{W},
$$

Idea of proof of the key proposition

Proposition

Let X solves the equation

$$
\begin{gathered}
\frac{\partial X_{t}}{\partial t}=\frac{1}{2} \frac{\partial^{2} X_{t}}{\partial u^{2}}+a+\sigma Q \dot{W} \\
X_{t}(0)=X_{t}(1)=0, \quad X_{0}(u)=g(u)
\end{gathered}
$$

and $X \geq 0$. Then $\sigma=\mathbb{I}_{\left\{X_{t}>0\right\}} \sigma$.

Proof

Analog of Ito＇s formula applid to F_{ε} ：

$$
\begin{aligned}
\left\langle F_{\varepsilon}\left(X_{t}\right)-F_{\varepsilon}\left(X_{0}\right), 1\right\rangle & =-\frac{1}{2} \int_{0}^{t}\left\langle F_{\varepsilon}^{\prime \prime}\left(X_{s}\right) \dot{X}_{s}, \dot{X}_{s}\right\rangle d s+\int_{0}^{t}\left\langle F_{\varepsilon}^{\prime}\left(X_{s}\right), a_{s}\right\rangle d s \\
& +\frac{1}{2} \int_{0}^{t}\left\langle Q\left[\sigma F_{\varepsilon}^{\prime \prime}\left(X_{s}\right) \cdot\right], Q[\sigma \cdot]\right\rangle_{H S} d s+M_{F_{\varepsilon}}(t),
\end{aligned}
$$

where

$$
\begin{gathered}
F_{\varepsilon}(x):=\int_{-\infty}^{x} \int_{-\infty}^{y} \psi_{\varepsilon}(r) d y d r, \\
0 \leq F_{\varepsilon}^{\prime}(x) \leq 2 \varepsilon, \quad F_{\varepsilon}^{\prime \prime}(x) \rightarrow \mathbb{I}_{\{0\}}(x)
\end{gathered}
$$

Proof

Analog of Ito's formula applid to F_{ε} :

$$
\begin{aligned}
\left\langle F_{\varepsilon}\left(X_{t}\right)-F_{\varepsilon}\left(X_{0}\right), 1\right\rangle & =-\frac{1}{2} \int_{0}^{t}\left\langle F_{\varepsilon}^{\prime \prime}\left(X_{s}\right) \dot{X}_{s}, \dot{X}_{s}\right\rangle d s+\int_{0}^{t}\left\langle F_{\varepsilon}^{\prime}\left(X_{s}\right), a_{s}\right\rangle d s \\
& +\frac{1}{2} \int_{0}^{t}\left\langle Q\left[\sigma F_{\varepsilon}^{\prime \prime}\left(X_{s}\right) \cdot\right], Q[\sigma \cdot]\right\rangle_{H S} d s+M_{F_{\varepsilon}}(t),
\end{aligned}
$$

where

$$
\begin{gathered}
F_{\varepsilon}(x):=\int_{-\infty}^{x} \int_{-\infty}^{y} \psi_{\varepsilon}(r) d y d r, \\
0 \leq F_{\varepsilon}^{\prime}(x) \leq 2 \varepsilon, \quad F_{\varepsilon}^{\prime \prime}(x) \rightarrow \mathbb{I}_{\{0\}}(x)
\end{gathered}
$$

Hence all green terms $\rightarrow 0$ and red term $\rightarrow \int_{0}^{t}\left\langle Q\left[\sigma \mathbb{I}_{\left\{X_{s}=0\right\}} \cdot\right], Q[\sigma \cdot]\right\rangle_{H S} d s$

Proof

Analog of Ito's formula applid to F_{ε} :

$$
\begin{aligned}
\left\langle F_{\varepsilon}\left(X_{t}\right)-F_{\varepsilon}\left(X_{0}\right), 1\right\rangle & =-\frac{1}{2} \int_{0}^{t}\left\langle F_{\varepsilon}^{\prime \prime}\left(X_{s}\right) \dot{X}_{s}, \dot{X}_{s}\right\rangle d s+\int_{0}^{t}\left\langle F_{\varepsilon}^{\prime}\left(X_{s}\right), a_{s}\right\rangle d s \\
& +\frac{1}{2} \int_{0}^{t}\left\langle Q\left[\sigma F_{\varepsilon}^{\prime \prime}\left(X_{s}\right) \cdot\right], Q[\sigma \cdot]\right\rangle_{H S} d s+M_{F_{\varepsilon}}(t),
\end{aligned}
$$

where

$$
\begin{gathered}
F_{\varepsilon}(x):=\int_{-\infty}^{x} \int_{-\infty}^{y} \psi_{\varepsilon}(r) d y d r, \\
0 \leq F_{\varepsilon}^{\prime}(x) \leq 2 \varepsilon, \quad F_{\varepsilon}^{\prime \prime}(x) \rightarrow \mathbb{I}_{\{0\}}(x)
\end{gathered}
$$

Hence all green terms $\rightarrow 0$ and red term $\rightarrow \int_{0}^{t}\left\langle Q\left[\sigma \mathbb{I}_{\left\{X_{s}=0\right\}} \cdot\right], Q[\sigma \cdot]\right\rangle_{H S} d s=0$
\Longrightarrow We can replace σ by $\mathbb{I}_{\left\{X_{s}>0\right\}} \sigma$

Open problem and references

Open problems：

－Is a solution to the equation unique？
－Does the solution of the equation with the identity operator Q exists？
－What is the invariant measure for the dynamics？
－How much time does the equation spend at zero？

Vitalii Konarovskyi， Sticky－Reflected Stochastic Heat Equation Driven by Colored Noise Ukrain．Math．J．，Vol．72，no．9， 2021
（arXiv：2005．11773）
圊 Vitalii Konarovskyi，
Coalescing－Fragmentating Wasserstein Dynamics：particle approach （arXiv：1711．03011）

Thank you for your attention！

