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Introduction of the equation



Sticky-reflected Brownian motion

dx(t) = λI{x(t)=0}dt+ I{x(t)>0}dw(t),

x(0) = x0 ≥ 0,

where λ > 0 and w is an 1-dim Brownian motion.

The equation admits only a weak solution which is unique in law
(Engelbert and Peskir, 2014)
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Stochastic heat equation

∂Xt

∂t
=

1

2

∂2Xt

∂u2
+ Ẇt, t > 0, u ∈ (0, 1),

X0 = g, Xt(0) = Xt(1) = 0,

where Ẇ is a space-time white noise and g ∈ C[0, 1].

Definition of weak solution

A continuous process X : [0,∞)× [0, 1] → R is called a weak solution to
the SHE if for any φ ∈ C2[0, 1] with φ(0) = φ(1) = 0

Mφ
t := ⟨Xt, φ⟩ − ⟨X0, φ⟩ −

1

2

∫ t

0

⟨Xs, φ
′′⟩ ds

is a martingale with quadratic variation

[Mφ]t =

∫ t

0

∥φ∥2L2
ds,

where ⟨Xt, φ⟩ =
∫ 1

0
Xt(u)φ(u)du. (Well-posedness – Funaki, 1983)
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Sticky-reflected stochastic heat equation

Stochastic heat equation on [0, 1]
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Reflected stochastic heat equation

Sticky-reflected SHE:

∂Xt

∂t
=

1

2

∂2Xt

∂u2
+ λI{Xt=0} + I{Xt>0}Ẇt

X0 = g ≥ 0, Xt(0) = Xt(1) = 0

Reflected SHE (D. Nulart and É. Pardoux ’92)

∂Xt

∂t
=

1

2

∂2Xt

∂u2
+ Lt + Ẇt

X0 = g ≥ 0, Xt(0) = Xt(1) = 0,∫ ∞

0

∫ 1

0

Xt(u)dLt(u) = 0, Xt ≥ 0.

There exists a unique continuous process X : [0, 1] × [0,∞) → R and a
measure (local time) L on [0, 1]× [0,∞) satisfying the reflected SHE.
(D. Nulart and É. Pardoux ’92)



Reflected stochastic heat equation

Sticky-reflected SHE:

∂Xt

∂t
=

1

2

∂2Xt

∂u2
+ λI{Xt=0} + I{Xt>0}Ẇt
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Formulation of the main result
Sticky-reflected SHE:

∂Xt

∂t
=

1

2

∂2Xt

∂u2
+ λI{Xt=0} + I{Xt>0}Ẇt

X0 = g ≥ 0, Xt(0) = Xt(1) = 0,

where Q is non-negative definite self-adjoint Hilbert-Schmidt operator in L2[0, 1]

Solution to sticky-reflected SHE

A continuous process X : [0,∞)× [0, 1] → R is called a weak solution to
the sticky-reflected SHE if for any φ ∈ C2[0, 1] with φ(0) = φ(1) = 0

Mφ
t := ⟨Xt, φ⟩ − ⟨X0, φ⟩ −

1

2

∫ t

0

⟨Xs, φ
′′⟩ ds−

∫ t

0

〈
λI{Xs=0}, φ

〉
ds

is a martingale with quadratic variation

[Mφ]t =

∫ t

0

∥Q(I{Xs>0}φ)∥2L2
ds.
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Formulation of the main result

Let {ek, k ≥ 1} and {µk, k ≥ 1} be eigenvectors and eigenvalues of Q. Define

χ2 :=

∞∑
k=1

µ2
ke

2
k.

Theorem K. 2021

If χ2 > 0 a.e., then the sticky-reflected SHE admits a weak solution.
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Meaning of assumtion χ2 > 0

The equation

dx(t) = λI{x(t)=0}dt+ I{x(t)>0}dw(t)

x(0) = 0

has no solution

χ2 =
∑∞

k=1 µ
2
ke

2
k > 0 means that the solution X to the equation

∂Xt

∂t
=

1

2

∂2Xt

∂u2
+ λI{Xt=0} + I{Xt>0}QẆt

feels a noise at any point of [0, 1].
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Description of the idea of construction of solution

using the equation

dx(t) = λI{x(t)=0}dt + I{x(t)>0}dw(t)



Step I. Approximation sequence
Consider the SDE for sticky-reflected BM:

dx(t) = λI{x(t)=0}dt+ I{x(t)>0}dw(t),

x(0) = x0 ≥ 0.

We approximate its solution by the solutions to the SDE

dxn(t) = λ(1− κ2n(xn(t)))dt+ κn(xn(t))dw(t),

xn(0) = x0.

which have non-negative strong solutons xn(t) ≥ 0.

1

1
n

κn κn(y) → I{y>0},

1− κ2n(y) → 1− I2{y>0} = I{y=0}

for y ≥ 0, as n→ ∞.
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Problem of approximation

Once can show that {xn, n ≥ 1} is tight in C[0,∞) =⇒

xn → x in C[0,∞)

along a subsequence.

But

xn(t) = x0 +

∫ t

0

λ(1− κ2n(xn(s)))ds+

∫ t

0

κn(xn(s))dw(s),

↓ ̸↓ ̸↓

x(t) = x0 +

∫ t

0

λI{x(s)=0}ds +

∫ t

0

I{x(s)>0}dw(s)
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Step II. Convergence in an appropriate space

xn(t) = x0 +

∫ t

0
λ(1− κ2

n(xn(s)))ds+

∫ t

0
κn(xn(s))dw(s),

Using tighntess argument, one has

xn(t) → x(t)

an(t) :=

∫ t

0

λ(1− κ2n(xn(s)))ds→ a(t)

ηn(t) :=

∫ t

0

κn(xn(s))dw(s) → η(t)

[ηn]t =

∫ t

0

κ2n(xn(s))ds→ ρ(t)

in C[0,∞) in distribution along a subsequence.



Step III. Properties of the limit process

xn(t)→ x(t), an(t) :=

∫ t

0
λ(1− κ2

n(xn(s)))ds → a(t)

ηn(t) :=

∫ t

0
κn(xn(s))dw(s) → η(t), [ηn]t =

∫ t

0
κ2
n(xn(s))ds → ρ(t)

We remark that

x(t) = x0 + a(t) + η(t) ≥ 0

η is a continuous martingale

[η(t)]t = ρ(t)

κ2n(xn) is tight in the weak topology of L2[0, T ], therefore,

κ2n(xn) → ρ̇ ∈ L2[0, T ] and ρ(t) =

∫ t

0

ρ̇(s)ds

a(t) = λt− λρ(t) =
∫ t

0
λ(1− ρ̇(s))ds

We need to show that ρ̇(s) = I{x(s)>0}!
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Key observation

Lemma

If x is a continuous non-negative semimartingale with q.v.

[x]t =

∫ t

0

σ2(s)ds,

then
σ2(s) = σ2(s)I{x(s)>0} s-a.e.

Proof. ∫ t

0

σ2(s)I{x(s)=0}ds =

∫ t

0

I{0}(x(s))d[x]s

=

∫ +∞

−∞
I{0}(x)Lx

t dx = 0, t ≥ 0

whre Lx
t is the local time of x.



Step IV. Identification of quadratic variation
Remind

x(t) = x0 + a(t) + η(t) ≥ 0 is a continuous semimartingale

[x]t = [η]t =
∫ t

0
ρ̇(s)ds

κ2n(xn) → ρ̇ in a weak topology of L2[0, 1] along a subsequence

Since ρ̇ = ρ̇I{x(s)>0} and

1

1
n

κn
κ2n(yn)I{y>0} → I{y>0},

as yn → y, we get

∫ t

0

ρ̇(s)dt =

∫ t

0

ρ̇I{x(s)>0}ds = lim
n

∫ t

0

κ2n(xn(s))I{x(s)>0}ds

=

∫ t

0

I{x(s)>0}ds, t > 0
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Proof of existence of solution to

sticky-reflected SHE

∂Xt

∂t
=

1

2

∂2Xt

∂u2
+ λI{Xt=0} + I{Xt>0}QẆt



Discrete equation

We discretize only the space variable u ∈ [0, 1] by k
n , k = 1, . . . , n.

Set πn
k = I[ k−1

n , kn )
and define

wk(t) :=
√
n

∫ t

0

∫ 1

0

(Qπn
k )(u)W (du, ds)

Consider the following SDE

dxk(t) =
1

2
∆nxk(t)dt+ I{xk(t)=0}dt+

√
nI{xk(t)>0}dwk(t), k = 1, . . . , n,

with x0(t) = xn+1(t) = 0 and ∆nxk = n2 (xk+1 + xk−1 − 2xk)

Set

Xn
t (u) = xk(t),

k − 1

n
≤ u <

k

n
, u ∈ [0, 1].

Remark that Xn ≥ 0.
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Set

Xn
t (u) = xk(t),

k − 1

n
≤ u <

k

n
, u ∈ [0, 1].

Remark that Xn ≥ 0.
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Convergence result
For every φ ∈ C2[0, 1] with φ(0) = φ(1) = 0,

⟨Xn
t , φ⟩ = ⟨Xn

0 , φ⟩+
1

2

∫ t

0

〈
Xn

s , ∆̃
nφ

〉
ds+

∫ t

0

〈
I{Xn

s =0}, φ
〉
ds+Bn

φ

where Bn
φ is a continuous martingale with [Bφ]t =

∥∥Q(I{Xn
t >0}φ)

∥∥2.
There exists a subsequence nk, k ≥ 1, and a continuous process X such
that

Xnk(u, t) → X(u, t), ∀u, t;
∆̃nkφ→ φ′′;

I{Xnk
t >0} → σt;

I{Xnk
t =0} = 1− I{Xnk

t >0} → 1− σt.

Hence

⟨Xt, φ⟩ = ⟨g, φ⟩+ 1

2

∫ t

0

⟨Xs, φ
′′⟩ ds+

∫ t

0

⟨(1− σs), φ⟩ ds+Bφ

where Bφ is a continuous martingla with [Bφ]t = ∥Q(σtφ)∥2.
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∂2Xt
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+ (1− σ) + σQẆ ,
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Identification of coefficient σ

Proposition (K., 2020)

Let X solves the equation

∂Xt

∂t
=

1

2

∂2Xt

∂u2
+ a+ σQẆ ,

Xt(0) = Xt(1) = 0, X0(u) = g(u).

and X ≥ 0. Then σ = I{Xt>0}σ.



Identification of the coefficients

By the previous proposition,
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Idea of proof of the key proposition

Proposition

Let X solves the equation

∂Xt

∂t
=

1

2

∂2Xt

∂u2
+ a+ σQẆ ,

Xt(0) = Xt(1) = 0, X0(u) = g(u).

and X ≥ 0. Then σ = I{Xt>0}σ.



Proof

Analog of Ito’s formula applid to Fε:

⟨Fε(Xt)− Fε(X0), 1⟩ = −1

2

∫ t

0

〈
F ′′
ε (Xs)Ẋs, Ẋs

〉
ds+

∫ t

0

⟨F ′
ε(Xs), as⟩ ds

+
1

2

∫ t

0

⟨Q[σF ′′
ε (Xs)·], Q[σ·]⟩HS ds+MFε(t),

where

Fε(x) :=

∫ x

−∞

∫ y

−∞
ψε(r)dydr,

0 ≤ F ′
ε(x) ≤ 2ε, F ′′

ε (x) → I{0}(x)

1

ε

ψε

ε

Hence all green terms → 0 and red term →
∫ t

0

〈
Q[σI{Xs=0}·], Q[σ·]

〉
HS

ds

=⇒ We can replace σ by I{Xs>0}σ
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Open problem and references

Open problems:

Is a solution to the equation unique?

Does the solution of the equation with the identity operator Q exists?

What is the invariant measure for the dynamics?

How much time does the equation spend at zero?

Vitalii Konarovskyi,
Sticky-Reflected Stochastic Heat Equation Driven by Colored Noise
Ukrain. Math. J., Vol. 72, no. 9, 2021
(arXiv:2005.11773)

Vitalii Konarovskyi,
Coalescing-Fragmentating Wasserstein Dynamics: particle approach
(arXiv:1711.03011)
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