A Particle Model for Wasserstein Type Diffusion

Vitalii Konarovskyi

Bielefeld University

Bielefeld Stochastic Afternoon

Table of Contents

Dean-Kawasaki Equation

Dean-Kawasaki Equation

The Dean-Kawasaki equation for non-interacting particle systems:

$$rac{\partial}{\partial t}\mu_t = rac{lpha}{2}\Delta\mu_t +
abla\cdot\left(\sqrt{\mu_t}\dot{W_t}
ight)$$

It is used e.g. for description of particle density in the Langevin dynamics. (K. Kawasaki '94; D. Dean '96; A. Donev, E. Vanden-Eijnden '14, '15; B. Derrida '16...)

Dean-Kawasaki Equation

The Dean-Kawasaki equation for non-interacting particle systems:

$$rac{\partial}{\partial t}\mu_t = rac{lpha}{2}\Delta\mu_t +
abla\cdot\left(\sqrt{\mu_t}\dot{W_t}
ight)$$

It is used e.g. for description of particle density in the Langevin dynamics. (K. Kawasaki '94; D. Dean '96; A. Donev, E. Vanden-Eijnden '14, '15; B. Derrida '16...)

Definition of (martingale) solution

A continuous process $\mu_t \in \mathcal{P}(\mathbb{R}^d)$, $t \ge 0$, is a solution to the Dean-Kawasaki equation if, for every $\varphi \in \mathcal{C}_b^2(\mathbb{R}^d)$

$$M_{arphi}(t) = \langle arphi, \mu_t
angle - \langle arphi, \mu_0
angle - rac{lpha}{2} \int_0^t \langle \Delta arphi, \mu_s
angle ds$$

is a martingale with quadratic variation

$$\int_0^t \langle |\nabla \varphi|^2, \mu_s \rangle ds.$$

Let B_k , $k \in \{1, ..., n\} =: [n]$, be independent Brownian motions with diffusion rate n.

Let B_k , $k \in \{1, ..., n\} =: [n]$, be independent Brownian motions with diffusion rate n. Define the measure valued process

$$\mu_t = \frac{1}{n} \sum_{k=1}^n \delta_{B_k(t)}, \quad t \ge 0.$$

Let B_k , $k \in \{1, ..., n\} =: [n]$, be independent Brownian motions with diffusion rate n. Define the measure valued process

$$\mu_t = \frac{1}{n} \sum_{k=1}^n \delta_{B_k(t)}, \quad t \ge 0.$$

By Ito's formula,

$$egin{aligned} &\langle arphi, \mu_t
angle &= rac{1}{n} \sum_{k=1}^n arphi(B_k(t)) = \langle arphi, \mu_0
angle + rac{1}{2n} \sum_{k=1}^n \int_0^t \Delta arphi(B_k(s)) d(ns) \ &+ rac{1}{n} \sum_{k=1}^n \int_0^t
abla arphi(B_k(s)) \cdot dB_k(s) \end{aligned}$$

Let B_k , $k \in \{1, ..., n\} =: [n]$, be independent Brownian motions with diffusion rate n. Define the measure valued process

$$\mu_t = \frac{1}{n} \sum_{k=1}^n \delta_{B_k(t)}, \quad t \ge 0.$$

By Ito's formula,

$$egin{aligned} &\langle arphi, \mu_t
angle &= rac{1}{n} \sum_{k=1}^n arphi(B_k(t)) = \langle arphi, \mu_0
angle + rac{1}{2n} \sum_{k=1}^n \int_0^t \Delta arphi(B_k(s)) d(ns) \ &+ rac{1}{n} \sum_{k=1}^n \int_0^t
abla arphi(B_k(s)) \cdot dB_k(s) \end{aligned}$$

Hence

$$M_{\varphi}(t) = \langle \varphi, \mu_t \rangle - \langle \varphi, \mu_0 \rangle - \frac{n}{2} \int_0^t \langle \Delta \varphi, \mu_s \rangle \, ds$$

is a martingale with q.v. $[M_{\varphi}]_t = \int_0^t \left\langle |\nabla \varphi|^2, \mu_s \right\rangle ds.$

DK equation: ill-posedness vs. triviality

Therefore,

$$u_t = rac{1}{n}\sum_{k=1}^n \delta_{B_k(t)}, \quad t \geq 0,$$

(1)

is a solution to the DK equation

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right)$$

with $\alpha = n$.

Theorem (K./ Lehmann/ Renesse/ '19)

Only for $\alpha = n \in \mathbb{N}$ and $\mu_0 = \frac{1}{n} \sum_{k=1}^n \delta_{x_k}$ the DK equation has a solution. Moreover, it is unique and defined by (1).

Proof of the theorem: basic properties of solutions

$$rac{\partial}{\partial t} \mu_t = rac{lpha}{2} \Delta \mu_t +
abla \cdot \left(\sqrt{\mu_t} \dot{W}_t
ight)$$

• The equation preserves the total mass, i.e $\mu_t(\mathbb{R}^d) = \mu_0(\mathbb{R}^d)$. Take $\varphi \equiv 1$. Then

$$\mu_t(\mathbb{R}^d) = \langle arphi, \mu_t
angle = \langle arphi, \mu_0
angle + \int_0^t \langle \Delta arphi, \mu_s
angle ds + M_arphi(t)$$

where the q.v. $[M_{\varphi}]_t = \int_0^t \langle |\nabla \varphi|^2, \mu_s \rangle ds = 0.$

Proof of the theorem: basic properties of solutions

$$rac{\partial}{\partial t}\mu_t = rac{lpha}{2}\Delta\mu_t +
abla\cdot\left(\sqrt{\mu_t}\dot{W}_t
ight)$$

• The equation preserves the total mass, i.e $\mu_t(\mathbb{R}^d) = \mu_0(\mathbb{R}^d)$. Take $\varphi \equiv 1$. Then

$$\mu_t(\mathbb{R}^d) = \langle \varphi, \mu_t \rangle = \langle \varphi, \mu_0 \rangle + \int_0^t \langle \Delta \varphi, \mu_s \rangle ds + M_{\varphi}(t)$$

where the q.v. $[M_{\varphi}]_t = \int_0^t \langle |\nabla \varphi|^2, \mu_s \rangle ds = 0.$

Laplace duality:

$$\mathbb{E}e^{-\langle f,\mu_t\rangle}=e^{-\langle v(t),\mu_0\rangle},$$

where v is a solution to the Hamilton-Jacobi equation:

$$\begin{cases} \frac{\partial v}{\partial t} = \frac{\alpha}{2} \Delta v - \frac{1}{2} |\nabla v|^2, \\ v|_{t=0} = f \end{cases}$$

$$d_{s}e^{-\langle v(t-s),\mu_{s}\rangle} = e^{-\langle v(t-s),\mu_{s}\rangle} \\ \cdot \left[\langle -\partial_{s}v(t-s) - \frac{\alpha}{2}\Delta v(t-s) + \frac{1}{2}|\nabla v(t-s)|^{2},\mu_{s}\rangle \right] ds + dM$$

Dean-Kawasaki Equation

Proof of the theorem: generating function of $\mu_t(A)$

H-J equation:

$$\begin{cases} \frac{\partial v}{\partial t} = \frac{\alpha}{2} \Delta v - \frac{1}{2} |\nabla v|^2, \\ v|_{t=0} = f \end{cases}$$

Solution to H-J equation: $V_t f = -\alpha \ln \left(P_t e^{-\frac{1}{\alpha} f} \right)$,

where $u(t) = P_t g$ is the solution to the heat equation:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\alpha}{2} \Delta u, \\ u|_{t=0} = g \end{cases}$$

Dean-Kawasaki Equation

Proof of the theorem: generating function of $\mu_t(A)$

H-J equation:

$$\begin{cases} \frac{\partial v}{\partial t} = \frac{\alpha}{2} \Delta v - \frac{1}{2} |\nabla v|^2, \\ v|_{t=0} = f \end{cases}$$

Solution to H-J equation: $V_t f = -\alpha \ln \left(P_t e^{-\frac{1}{\alpha} f} \right)$, where $u(t) = P_t g$ is the solution to the heat equation:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\alpha}{2} \Delta u, \\ u|_{t=0} = g \end{cases}$$

Lemma.

For $A \subset \mathbb{R}^d$ and $t \ge 0$, one has

$$\mathbb{E}s^{lpha\mu_t(A)}=e^{lpha\langle\mu_0,\ln(1+(s-1)P_t\mathbb{I}_A)
angle},\quad s>0.$$

$$\begin{split} \mathbb{E}e^{-r\alpha\mu_{t}(A)} &= \mathbb{E}e^{-\langle\mu_{t}, r\alpha\mathbb{I}_{A}\rangle} = e^{-\langle\mu_{0}, V_{t}(r\alpha\mathbb{I}_{A})\rangle} \\ &= e^{-\langle\mu_{0}, -\alpha\ln\left(P_{t}e^{-r\mathbb{I}_{A}}\right)\rangle} = e^{\alpha\langle\mu_{0}, \ln\left(1+(e^{-r}-1)P_{t}\mathbb{I}_{A}\right)\rangle}, \quad r > 0 \end{split}$$

Vitalii Konarovskyi (Bielefeld University)

• $\mathbb{E}s^{\alpha\mu_t(A)} = e^{\alpha\langle\mu_0,\ln(1+(s-1)P_t\mathbb{I}_A)\rangle}$ $t \ge 0, \ A \subset \mathbb{R}^d$;

- $\mathbb{E}s^{lpha\mu_t(A)} = e^{lpha\langle\mu_0,\ln(1+(s-1)P_t\mathbb{I}_A)
 angle}$ $t\geq 0, \ A\subset \mathbb{R}^d$;
- Let A is bounded and $t > 0 \implies P_t \mathbb{I}_A \leq 1 \delta$, for some $\delta > 0$;

- $\mathbb{E}s^{lpha\mu_t(A)} = e^{lpha\langle\mu_0,\ln(1+(s-1)P_t\mathbb{I}_A)
 angle}$ $t\geq 0, \ A\subset \mathbb{R}^d$;
- Let A is bounded and $t > 0 \implies P_t \mathbb{I}_A \leq 1 \delta$, for some $\delta > 0$;
- $s \mapsto e^{\alpha \langle \mu_0, \ln(1+(s-1)P_t \mathbb{I}_A) \rangle}$ is well-defined and inf. diff. in a neighbourhood of 0;

- $\mathbb{E}s^{\alpha\mu_t(A)} = e^{\alpha\langle\mu_0, \ln(1+(s-1)P_t\mathbb{I}_A)\rangle}$ $t \ge 0, \ A \subset \mathbb{R}^d$;
- Let A is bounded and $t > 0 \implies P_t \mathbb{I}_A \leq 1 \delta$, for some $\delta > 0$;
- $s \mapsto e^{\alpha \langle \mu_0, \ln(1+(s-1)P_t \mathbb{I}_A) \rangle}$ is well-defined and inf. diff. in a neighbourhood of 0;

Lemma.

Let ξ be a nonnegative random variable on $\mathbb R$ and $orall n \geq 1$

$$\mathbb{E}s^{\xi} = \sum_{k=0}^{n} s^{k} p_{k} + o(s^{n}), \quad s \to 0 + .$$

Then $\xi \in \mathbb{N} \cup \{0\}$ a.s. and $\mathbb{P} \{\xi = k\} = p_k$, $k \ge 0$.

- $\mathbb{E}s^{\alpha\mu_t(A)} = e^{\alpha\langle\mu_0, \ln(1+(s-1)P_t\mathbb{I}_A)\rangle}$ $t \ge 0, \ A \subset \mathbb{R}^d$;
- Let A is bounded and $t > 0 \implies P_t \mathbb{I}_A \leq 1 \delta$, for some $\delta > 0$;
- $s \mapsto e^{\alpha \langle \mu_0, \ln(1+(s-1)P_t \mathbb{I}_A) \rangle}$ is well-defined and inf. diff. in a neighbourhood of 0;

Lemma.

Let ξ be a nonnegative random variable on $\mathbb R$ and $orall n \geq 1$

$$\mathbb{E}s^{arepsilon} = \sum_{k=0}^n s^k p_k + o(s^n), \quad s o 0+.$$

Then $\xi \in \mathbb{N} \cup \{0\}$ a.s. and $\mathbb{P} \{\xi = k\} = p_k$, $k \ge 0$.

• $\alpha \mu_t(A) \in \mathbb{N} \cup \{0\};$

- $\mathbb{E}s^{lpha\mu_t(A)} = e^{lpha\langle\mu_0,\ln(1+(s-1)P_t\mathbb{I}_A)
 angle}$ $t \ge 0, \ A \subset \mathbb{R}^d$;
- Let A is bounded and $t > 0 \implies P_t \mathbb{I}_A \leq 1 \delta$, for some $\delta > 0$;
- $s \mapsto e^{\alpha \langle \mu_0, \ln(1+(s-1)P_t \mathbb{I}_A) \rangle}$ is well-defined and inf. diff. in a neighbourhood of 0;

Lemma.

Let ξ be a nonnegative random variable on $\mathbb R$ and $orall n \geq 1$

$$\mathbb{E} s^{\xi} = \sum_{k=0}^n s^k
ho_k + o(s^n), \quad s o 0 + .$$

Then $\xi \in \mathbb{N} \cup \{0\}$ a.s. and $\mathbb{P} \{\xi = k\} = p_k, \ k \ge 0$.

- $\alpha \mu_t(A) \in \mathbb{N} \cup \{0\};$
- Making $A \uparrow \mathbb{R}$, $\alpha \mu_t(A) \to \alpha \in \mathbb{N}$;

- $\mathbb{E}s^{lpha\mu_t(A)} = e^{lpha\langle\mu_0,\ln(1+(s-1)P_t\mathbb{I}_A)
 angle}$ $t \ge 0, \ A \subset \mathbb{R}^d$;
- Let A is bounded and $t > 0 \implies P_t \mathbb{I}_A \leq 1 \delta$, for some $\delta > 0$;
- $s \mapsto e^{\alpha \langle \mu_0, \ln(1+(s-1)P_t \mathbb{I}_A) \rangle}$ is well-defined and inf. diff. in a neighbourhood of 0;

Lemma.

Let ξ be a nonnegative random variable on $\mathbb R$ and $\forall n \geq 1$

$$\mathbb{E}s^{\xi} = \sum_{k=0}^n s^k p_k + o(s^n), \quad s o 0+.$$

Then $\xi \in \mathbb{N} \cup \{0\}$ a.s. and $\mathbb{P}\left\{\xi = k\right\} = p_k, \ k \ge 0.$

- $\alpha \mu_t(A) \in \mathbb{N} \cup \{0\};$
- Making $A \uparrow \mathbb{R}$, $\alpha \mu_t(A) \to \alpha \in \mathbb{N}$;
- Making $t \to 0+$, we get $\mu_0 = \frac{1}{\alpha} \sum_{i=1}^{\alpha} \delta_{x_i}$.

DK equation for interacting particle systems

Dean-Kawasaki equation for interacting particle system:

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\mu_t\nabla\frac{\delta F(\mu_t)}{\delta\mu_t}\right) + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right)$$

DK equation for interacting particle systems

Dean-Kawasaki equation for interacting particle system:

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\mu_t\nabla\frac{\delta F(\mu_t)}{\delta\mu_t}\right) + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right)$$

Girsanov's transformation $d\tilde{\mathbb{P}} = e^{M^F(t) - \frac{1}{2}[M^F]_t} d\mathbb{P}$, where M^F is the martingale part of $F(\mu_t)$, $t \ge 0$, gives that μ_t is a solution to

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right)$$

on $(\Omega, \mathcal{F}, \tilde{\mathbb{P}})$.

DK equation for interacting particle systems

Dean-Kawasaki equation for interacting particle system:

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\mu_t\nabla\frac{\delta F(\mu_t)}{\delta\mu_t}\right) + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right)$$

Girsanov's transformation $d\tilde{\mathbb{P}} = e^{M^F(t) - \frac{1}{2}[M^F]_t} d\mathbb{P}$, where M^F is the martingale part of $F(\mu_t)$, $t \ge 0$, gives that μ_t is a solution to

$$rac{\partial}{\partial t}\mu_t = rac{lpha}{2}\Delta\mu_t +
abla\cdot\left(\sqrt{\mu_t}\dot{W_t}
ight)$$

on $(\Omega, \mathcal{F}, \tilde{\mathbb{P}})$.

Theorem (K./ Lehmann/ Renesse '20)

Let $F \in C_b^2(\mathcal{M}_F(\mathbb{R}^d))$. Then the Dean-Kawasaki equation has a solution only for $\alpha = n \in \mathbb{N}$ and $\mu_0 = \frac{1}{n} \sum_{k=1}^n \delta_{x_k}$. Moreover, it is uniquely defined by

$$\mu_t = \frac{1}{n} \sum_{k=1}^n \delta_{X_k(t)}, \quad t \ge 0.$$

Table of Contents

Coalescing particle system: non-reversible case

icky-reflected particle system: reversible case

Corrected Dean-Kawasaki equations

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\sqrt{\mu_t}\dot{W_t}\right)$$

• Correction of diffusion:

$$rac{\partial}{\partial t}\mu_t = rac{lpha}{2}\Delta\mu_t +
abla\cdot\left(\sigma(\mu_t)\dot{W}^c_t
ight)$$

- J. Zimmer, F. Cornalba, T. Shardlow, B. Gess, B. Fehrman, M. Mariani...
 - Well-posedness;
 - LDP;
 - Particle approximation, etc.

Corrected Dean-Kawasaki equations

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\sqrt{\mu_t}\dot{W_t}\right)$$

• Correction of diffusion:

$$rac{\partial}{\partial t}\mu_t = rac{lpha}{2}\Delta\mu_t +
abla\cdot\left(\sigma(\mu_t)\dot{W}^c_t
ight)$$

- J. Zimmer, F. Cornalba, T. Shardlow, B. Gess, B. Fehrman, M. Mariani...
 - Well-posedness;
 - LDP;
 - Particle approximation, etc.
- Correction of "drift"

$$\frac{\partial}{\partial t}\mu_t = \Gamma(\mu_t) + \nabla \cdot \left(\sqrt{\mu_t} \dot{W}_t\right)$$

M. von Renesse, S. Andres, L. Dello Schiavo, V. Marx...

- Connection with geometry of the Wasserstein space;
- Assymptotic behaviour;
- Particle approximation, etc.

Goal: propose a system of interacting diffusion particles on \mathbb{R} with masses such that the associated measure-valued process is a weak solution to a corrected Dean-Kawasaki equation

$$\frac{\partial}{\partial t}\mu_t = \Gamma(\mu_t) + \nabla \cdot \left(\sqrt{\mu_t} \dot{W}_t\right)$$

Goal: propose a system of interacting diffusion particles on \mathbb{R} with masses such that the associated measure-valued process is a weak solution to a corrected Dean-Kawasaki equation

$$rac{\partial}{\partial t}\mu_t = \Gamma(\mu_t) +
abla \cdot \left(\sqrt{\mu_t} \dot{W}_t
ight)$$

Why the model can be interesting:

• The interesting particle system is a physical improvement of already existing models.

Goal: propose a system of interacting diffusion particles on \mathbb{R} with masses such that the associated measure-valued process is a weak solution to a corrected Dean-Kawasaki equation

$$rac{\partial}{\partial t} \mu_t = \Gamma(\mu_t) +
abla \cdot \left(\sqrt{\mu_t} \dot{W}_t
ight)$$

Why the model can be interesting:

- The interesting particle system is a physical improvement of already existing models.
- The model satisfies the Varadhan formula for short times which is governed by the quadratic Wasserstein distance.

Goal: propose a system of interacting diffusion particles on \mathbb{R} with masses such that the associated measure-valued process is a weak solution to a corrected Dean-Kawasaki equation

$$rac{\partial}{\partial t}\mu_t = \Gamma(\mu_t) +
abla \cdot \left(\sqrt{\mu_t} \dot{W}_t
ight)$$

Why the model can be interesting:

- The interesting particle system is a physical improvement of already existing models.
- The model satisfies the Varadhan formula for short times which is governed by the quadratic Wasserstein distance.
- In reversible case, it has a new invariant measure on the space of probability measures on ℝ with full support.

Goal: propose a system of interacting diffusion particles on \mathbb{R} with masses such that the associated measure-valued process is a weak solution to a corrected Dean-Kawasaki equation

$$rac{\partial}{\partial t}\mu_t = \Gamma(\mu_t) +
abla \cdot \left(\sqrt{\mu_t} \dot{W}_t
ight)$$

Why the model can be interesting:

- The interesting particle system is a physical improvement of already existing models.
- The model satisfies the Varadhan formula for short times which is governed by the quadratic Wasserstein distance.
- In reversible case, it has a new invariant measure on the space of probability measures on $\mathbb R$ with full support.
- It is a (non-unique) particle solution to a corrected Dean-Kawasaki equation on $\mathcal{P}(\mathbb{R})$.

Key observation

Let X_1 and X_2 be independent continuous semimartingales with quadratic variation

 $[X_k]_t = a_k t$

Consider

$$\mu_t = m_1 \delta_{X_1(t)} + m_2 \delta_{X_2(t)}, \quad t \ge 0$$

Key observation

Let X_1 and X_2 be independent continuous semimartingales with quadratic variation

 $[X_k]_t = a_k t$

Consider

$$\mu_t = m_1 \delta_{X_1(t)} + m_2 \delta_{X_2(t)}, \quad t \ge 0$$

Observation: μ_t is a solution to a corrected Dean-Kawasaki equation

$$rac{\partial}{\partial t}\mu_t = \Gamma(\mu_t) +
abla \cdot \left(\sqrt{\mu_t} \dot{W}_t
ight)$$

with some Γ , (i.e, $[\langle \varphi, \mu \rangle]_t = \int_0^t \langle (\varphi')^2, \mu_s \rangle ds$) iff

$$a_k = \frac{1}{m_k}$$

Key observation

Let X_1 and X_2 be independent continuous semimartingales with quadratic variation

 $[X_k]_t = a_k t$

Consider

$$\mu_t = m_1 \delta_{X_1(t)} + m_2 \delta_{X_2(t)}, \quad t \ge 0$$

Observation: μ_t is a solution to a corrected Dean-Kawasaki equation

$$rac{\partial}{\partial t}\mu_t = \Gamma(\mu_t) +
abla \cdot \left(\sqrt{\mu_t} \dot{W}_t
ight)$$

with some Γ , (i.e, $[\langle \varphi, \mu \rangle]_t = \int_0^t \langle (\varphi')^2, \mu_s \rangle ds$) iff

$$a_k = \frac{1}{m_k}$$

 \implies We can not construct a solution to the DK equation with some Γ started from the Lebesgue measure on [0, 1], where massive particles move as independent, e.g., Brownian motions.

A coalescing particle system

Modified massive Arratia flow on $\ensuremath{\mathbb{R}}$

- Brownian particles start from points with masses;
- they move independently and coalesce after meeting;
- particles sum their masses after meeting and diffusion rate is inversely proportional to the mass.

A coalescing particle system

Modified massive Arratia flow on $\ensuremath{\mathbb{R}}$

- Brownian particles start from points with masses;
- they move independently and coalesce after meeting;
- particles sum their masses after meeting and diffusion rate is inversely proportional to the mass.

The model is a physical improvement of the Arratia flow, where particles do not change their diffusion rates.

(Arratia '79; Le Jan, Raimond '04; Schertzer, Sun, Swart '14; Berestycki, Garban, Sen '15)

Mathematical description of MMAF

Theorem (K., '17)

There exists a family of continuous processes X(u, t), $t \ge 0$, $u \in [0, 1]$ such that

- $(u,0) = u, \ u \in [0,1];$
- (u, \cdot) is a continuous martingale; (u, \cdot)
- **3** $X(u, t) \leq X(v, t), u < v;$

 $(X(u,\cdot),X(v,\cdot))_t = \int_0^t \frac{\mathbb{I}_{\{X(u,s)=X(v,s)\}}}{m(u,s)} ds, \ m(u,s) = \operatorname{Leb}\{w:X(w,t)=X(u,t)\}.$

X(u, t) is the position of particle at time t started from $u \in [0, 1]$

MMAF as a solution to corrected DK equation

Theorem (K./ Renesse '19)

• The evolution of particle masses $\mu_t = X(\cdot, t)_{\#}$ Leb satisfies the equation

$$\frac{\partial}{\partial t}\mu_t = \frac{1}{2}\Delta\mu_t^* + \nabla\cdot(\sqrt{\mu_t}\dot{W}_t),$$

with $\mu_t^* = \sum_{x \in \text{supp } \mu_t} \delta_x$ and $\mu_0 = \text{Leb}|_{[0,1]}$.

Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

$$p(t,x,y) = rac{1}{(2\pi t)^{n/2}} e^{-rac{\|x-y\|^2}{2t}} \sim e^{-rac{\|x-y\|^2}{2t}}, \quad t \to 0+$$

Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

$$p(t,x,y) = rac{1}{(2\pi t)^{n/2}} e^{-rac{\|x-y\|^2}{2t}} \sim e^{-rac{\|x-y\|^2}{2t}}, \quad t \to 0+1$$

Generalizations

- Heat equation with variable coefficients in \mathbb{R}^n (Varadhan (CPAM '67))
- Smooth Riemannian manifold with Ricci curvature bound (P. Li and S.-T. Yau (Acta Math. '86))
- Lipschitz Riemannian manifold without any sort of curvature bounds (J. Norris (Acta Math. 97))
- Infinite-dimensional case for heat kernel generated by a Dirichlet form (J. Ramírez (CPAM '01, Ann. Prob '03))

Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

$$p(t,x,y) = rac{1}{(2\pi t)^{n/2}} e^{-rac{\|x-y\|^2}{2t}} \sim e^{-rac{\|x-y\|^2}{2t}}, \quad t \to 0+1$$

Generalizations

- Heat equation with variable coefficients in \mathbb{R}^n (Varadhan (CPAM '67))
- Smooth Riemannian manifold with Ricci curvature bound (P. Li and S.-T. Yau (Acta Math. '86))
- Lipschitz Riemannian manifold without any sort of curvature bounds (J. Norris (Acta Math. 97))
- Infinite-dimensional case for heat kernel generated by a Dirichlet form (J. Ramírez (CPAM '01, Ann. Prob '03))

Corollary

If B_t , $t \ge 0$, is a Brownian motion on a Riemannian manifold, then

$$\mathbb{P}_{x}\left\{B_{t}=y\right\}\sim e^{-\frac{d^{2}(x,y)}{2t}},\quad t\rightarrow0+,$$

with *d* being the Riemannian distance.

Connection with optimal transport

Theorem (K./ Renesse '19)

The process $\mu_t = Y(\cdot, t)|_{\#}$ Leb, $t \ge 0$, which describes the evolution of particle masses in the modified massive Arratia flow satisfies Varadhan's formula

$$\mathbb{P}\{\mu_t = \nu\} \sim e^{-\frac{d_{\mathcal{W}}^2(\mu_0,\nu)}{2t}}, \quad t \to 0+$$

with the quadratic Wasserstein distance $d_{\mathcal{W}}$ in \mathbb{R} .

Quadratic Wasserstein distance: $d_{\mathcal{W}}(\nu_1, \nu_2) = \inf_{\xi_1 \sim \nu_1, \xi_2 \sim \nu_2} \left(\mathbb{E} |\xi_1 - \xi_2|^2 \right)^{\frac{1}{2}}$

Connection with optimal transport

Theorem (K./ Renesse '19)

The process $\mu_t = Y(\cdot, t)|_{\#}$ Leb, $t \ge 0$, which describes the evolution of particle masses in the modified massive Arratia flow satisfies Varadhan's formula

$$\mathbb{P}\{\mu_t = \nu\} \sim e^{-\frac{d_{\mathcal{W}}^2(\mu_0,\nu)}{2t}}, \quad t \to 0+$$

with the quadratic Wasserstein distance $d_{\mathcal{W}}$ in \mathbb{R} .

Quadratic Wasserstein distance: $d_{\mathcal{W}}(\nu_1, \nu_2) = \inf_{\xi_1 \sim \nu_1, \xi_2 \sim \nu_2} \left(\mathbb{E} |\xi_1 - \xi_2|^2 \right)^{\frac{1}{2}}$

 $(\mathcal{P}_2(\mathbb{R}), d_{\mathcal{W}})$ has an inf.-dim. Riemannian structure (F. Otto (JFA, '01)).

Idea of proof of $\mathbb{P}\{\mu_t = \nu\} \sim e^{-rac{d_{\mathcal{W}}^2(\mu_0,\nu)}{2t}}, \quad t o 0+:$

Since X(u, t) ≤ X(v, t) for u < v, one can show that X(·, t), t ≥ 0, is a continuous process in L[↑]₂ ⊂ L₂[0, 1].

 $\text{Idea of proof of } \mathbb{P}\{\mu_t=\nu\}\sim e^{-\frac{d_{\mathcal{W}}^2(\mu_0,\nu)}{2t}}, \quad t\to 0+\text{:}$

- Since X(u, t) ≤ X(v, t) for u < v, one can show that X(·, t), t ≥ 0, is a continuous process in L¹₂ ⊂ L₂[0, 1].
- $\{X(\cdot, \varepsilon t), t \in [0, T]\}_{\varepsilon > 0}$ satisfies the LDP in $\mathcal{C}([0, T], L_2^{\uparrow})$ with rate function

$$I(\varphi) = \begin{cases} \frac{1}{2} \int_0^T \|\dot{\varphi}(t)\|_{L_2}^2 dt, & \varphi \in H^2_{\mathrm{id}}([0, T], L_2^{\uparrow}), \\ +\infty, & \text{otherwise.} \end{cases}$$

$$H^2_{\mathrm{id}}([0,\,T],\,L_2^{\uparrow}) = \left\{ \varphi \,\in\, \mathcal{C}([0,\,T],\,L_2^{\uparrow}): \ \varphi(t) = \mathrm{id} + \int_0^t \dot{\varphi}(t) dt, \ \int_0^T \|\dot{\varphi}(t)\|_{L_2}^2 \,dt < +\infty \right\}$$

 $\text{Idea of proof of } \mathbb{P}\{\mu_t=\nu\}\sim e^{-\frac{d_{VV}^2(\mu_0,\nu)}{2t}}, \quad t\to 0+:$

- Since X(u, t) ≤ X(v, t) for u < v, one can show that X(·, t), t ≥ 0, is a continuous process in L¹₂ ⊂ L₂[0, 1].
- $\{X(\cdot, \varepsilon t), t \in [0, T]\}_{\varepsilon > 0}$ satisfies the LDP in $\mathcal{C}([0, T], L_2^{\uparrow})$ with rate function

$$I(\varphi) = \begin{cases} \frac{1}{2} \int_0^T \|\dot{\varphi}(t)\|_{L_2}^2 dt, & \varphi \in H^2_{\mathrm{id}}([0, T], L_2^{\uparrow}), \\ +\infty, & \text{otherwise.} \end{cases}$$

$$H^2_{\mathrm{id}}([0,\,T],\,L_2^{\uparrow}) = \left\{ \varphi \in \mathcal{C}([0,\,T],\,L_2^{\uparrow}): \ \varphi(t) = \mathrm{id} + \int_0^t \dot{\varphi}(t)dt, \ \int_0^T \|\dot{\varphi}(t)\|_{L_2}^2 dt < +\infty \right\}$$

• By contraction principle, $\{X(\varepsilon)\}_{\varepsilon>0}$ satisfies the LDP in L_2^{\uparrow} with the rate function

$$I(g) = rac{1}{2} \|\mathrm{id} - g\|_{L_2}^2, \quad g \in L_2^\uparrow.$$

 $\text{Idea of proof of } \mathbb{P}\{\mu_t=\nu\}\sim e^{-\frac{d_{VV}^2(\mu_0,\nu)}{2t}}, \quad t\to 0+:$

- Since X(u, t) ≤ X(v, t) for u < v, one can show that X(·, t), t ≥ 0, is a continuous process in L¹₂ ⊂ L₂[0, 1].
- $\{X(\cdot, \varepsilon t), t \in [0, T]\}_{\varepsilon > 0}$ satisfies the LDP in $\mathcal{C}([0, T], L_2^{\uparrow})$ with rate function

$$I(\varphi) = \begin{cases} \frac{1}{2} \int_0^T \|\dot{\varphi}(t)\|_{L_2}^2 dt, & \varphi \in H^2_{\mathrm{id}}([0, T], L_2^{\uparrow}), \\ +\infty, & \text{otherwise.} \end{cases}$$

$$H^2_{\mathrm{id}}([0,\,T],\,L_2^{\uparrow}) = \left\{ \varphi \in \mathcal{C}([0,\,T],\,L_2^{\uparrow}): \ \varphi(t) = \mathrm{id} + \int_0^t \dot{\varphi}(t)dt, \ \int_0^T \|\dot{\varphi}(t)\|_{L_2}^2 dt < +\infty \right\}$$

• By contraction principle, $\{X(\varepsilon)\}_{\varepsilon>0}$ satisfies the LDP in L_2^{\uparrow} with the rate function

$$I(g)=rac{1}{2}\|\mathrm{id}-g\|_{L_2}^2, \hspace{1em} g\in L_2^\uparrow.$$

• We use the isometry $\|g - f\|_{L_2} = d_W(\nu_g, \nu_f)$, where $\nu_g = g_{\#} \operatorname{Leb}|_{[0,1]}$ and $\nu_f = f_{\#} \operatorname{Leb}|_{[0,1]}$, $g, f \in L_2^{\uparrow}$.

Table of Contents

Dean-Kawasaki Equation

2) Coalescing particle system: non-reversible case

Sticky-reflected particle system: reversible case

Can we replace the coalescing by another type of interaction which would give a model reversible in time?

Can we replace the coalescing by another type of interaction which would give a model reversible in time?

Remind that the coalescing particle system X satisfies the following properties:

- $(u, 0) = u, \ u \in [0, 1]$
- **2** $X(u, \cdot)$ is a continuous martingale
- $X(u,t) \le X(v,t), \ u < v;$

 $(X(u,\cdot),X(v,\cdot))_t = \int_0^t \frac{\mathbb{I}_{\{X(u,s)=X(v,s)\}}}{m(u,s)} ds, \ m(u,s) = \operatorname{Leb}\{w:X(w,t)=X(u,t)\}.$

X(u, t) is the position of particle at time t started from u

Can we replace the coalescing by another type of interaction which would give a model reversible in time?

Remind that the coalescing particle system X satisfies the following properties:

- **(**) $X(u, 0) = g(u), u \in [0, 1]$, where $g \uparrow$;
- **2** $X(u, \cdot)$ is a continuous martingale
- $X(u,t) \le X(v,t), \ u < v;$

X(u, t) is the position of particle at time t started from g(u)

Can we replace the coalescing by another type of interaction which would give a model reversible in time?

Remind that the coalescing particle system X satisfies the following properties:

- $X(u,0) = g(u), u \in [0,1]$, where $g \uparrow$; • $X(u, \cdot) - \int_0^t \left(\xi(u) - \frac{1}{m(u,s)} \int_{\pi(u,s)} \xi(r) dr\right) ds$ is a continuous martingale, where $\pi(u,t) = \{v : X(u,t) = X(v,t)\}$ and $\xi \uparrow$; • X(u,t) < X(v,t), u < v;
- $(X(u,\cdot),X(v,\cdot))_t = \int_0^t \frac{\mathbb{I}_{\{X(u,s)=X(v,s)\}}}{m(u,s)} ds, \ m(u,s) = \operatorname{Leb}\{w:X(w,t)=X(u,t)\}.$

X(u, t) is the position of particle at time t started from g(u)

Remind that $X(u, \cdot) - \int_0^t \left(\xi(u) - \frac{1}{m(u,s)} \int_{\pi(u,s)} \xi(r) dr\right) ds$ is a continuous martingale, where $\pi(u, t) = \{v : X(u, t) = X(v, t)\}$ and $\xi \uparrow$.

Remind that $X(u, \cdot) - \int_0^t \left(\xi(u) - \frac{1}{m(u,s)} \int_{\pi(u,s)} \xi(r) dr\right) ds$ is a continuous martingale, where $\pi(u, t) = \{v : X(u, t) = X(v, t)\}$ and $\xi \uparrow$.

• If $\xi = 0$, then particles coalesce.

Remind that $X(u, \cdot) - \int_0^t \left(\xi(u) - \frac{1}{m(u,s)} \int_{\pi(u,s)} \xi(r) dr\right) ds$ is a continuous martingale, where $\pi(u, t) = \{v : X(u, t) = X(v, t)\}$ and $\xi \uparrow$.

- If $\xi = 0$, then particles coalesce.
- If ξ(u) = ξ(v), then particles u and v coalesce after the meeting: because the drifts of X(u, ·) and X(v, ·) at time s are equal after the meeting

$$\xi(u) - \frac{1}{m(u,s)} \int_{\pi(u,s)} \xi(u) du = \xi(v) - \frac{1}{m(v,s)} \int_{\pi(v,s)} \xi(r) dr,$$

since $\pi(u, s) = \pi(v, s)$ for X(u, s) = X(v, s).

Remind that $X(u, \cdot) - \int_0^t \left(\xi(u) - \frac{1}{m(u,s)} \int_{\pi(u,s)} \xi(r) dr\right) ds$ is a continuous martingale, where $\pi(u, t) = \{v : X(u, t) = X(v, t)\}$ and $\xi \uparrow$.

- If $\xi = 0$, then particles coalesce.
- If ξ(u) = ξ(v), then particles u and v coalesce after the meeting: because the drifts of X(u, ·) and X(v, ·) at time s are equal after the meeting

$$\xi(u) - \frac{1}{m(u,s)} \int_{\pi(u,s)} \xi(u) du = \xi(v) - \frac{1}{m(v,s)} \int_{\pi(v,s)} \xi(r) dr,$$

since $\pi(u, s) = \pi(v, s)$ for X(u, s) = X(v, s).

• If particle u is alone, i.e. $\pi(u, t) = \{u\}$, then it has no drift.

Sticky-reflected particle system: reversible case

sticky-reflected particle system: reversible case

SDE for the particle system

• One can show that $X(\cdot, t)$ is a continuous process in $L_2^{\uparrow} \subset L_2[0, 1]$, if, e.g., $g, \xi \in L_{2+\varepsilon}$.

SDE for the particle system

- One can show that $X(\cdot, t)$ is a continuous process in $L_2^{\uparrow} \subset L_2[0, 1]$, if, e.g., $g, \xi \in L_{2+\varepsilon}$.
- The conditions

$$X(u,\cdot) - \int_0^t \left(\xi(u) - \frac{1}{m(u,s)} \int_{\pi(u,s)} \xi(r) dr\right) ds$$
 is a continuous martingale

and

$$\langle X(u,\cdot), X(v,\cdot) \rangle_t = \int_0^t \frac{\mathbb{I}_{\{X(u,s)=X(v,s)\}}}{m(u,s)} ds$$

can be formally rewritten as

$$dX(u,t)=\frac{1}{m(u,t)}\int_0^1\mathbb{I}_{\pi(u,t)}W(dr,dt)+\left(\xi(u)-\frac{1}{m(u,t)}\int_0^1\mathbb{I}_{\pi(u,t)}\xi dr\right)dt,$$

where $\pi(u, t) = \{v : X(u, t) = X(v, t)\}$, $m(u, t) = \text{Leb}(\pi(u, t))$, and W is a cylindrical Wiener process in $L_2[0, 1]$.

SDE in L_2^{\uparrow} for the particle system

The family of equations

$$dX(u,t)=\frac{1}{m(u,t)}\int_0^1\mathbb{I}_{\pi(u,t)}W(dr,dt)+\left(\xi(u)-\frac{1}{m(u,t)}\int_0^1\mathbb{I}_{\pi(u,t)}\xi dr\right)dt,$$

can be rewritten as **one equation** but in $L_2^{\uparrow} \subset L_2[0,1]$:

$$dX_t = \operatorname{pr}_{X_t} dW_t + (\xi - \operatorname{pr}_{X_t} \xi) dt$$
 in L_2^{\uparrow} ,

where $X_t := X(\cdot, t)$ and pr_g is the **projection** in $L_2[0, 1]$ onto

 $L_2(g) = \{f : f \text{ is } \sigma(g) \text{-measurable}\}$

Invariant measure and the Differential operator

• Invariant measure on L_2^{\uparrow} :

$$\Xi = \sum_{n=1}^{\infty} \Xi^n,$$

where Ξ^n is the distribution of $\sum_{k=1}^n \mathbb{I}_{[q_{k-1},q_k]} \times_k$ and points of jumps (q_1, \ldots, q_{n-1}) are distributed according to

$$d
u_{\xi}^n = 2^{n-1} \prod_{k=1}^n (q_k - q_{k-1}) d\xi(q_1) \dots \xi(q_{n-1}), \quad \text{on} \quad 0 = q_0 < q_1 < \dots < q_n = 1$$

and values of jumps (x_1, \ldots, x_n) are uniformly distributed on $x_1 \le x_2 \le \cdots \le x_n$. One can show that supp $\Xi = L_2^{\uparrow}(\xi) = \{f \in L_2^{\uparrow} : f \text{ is } \sigma(\xi)\text{-measurable}\}$

Invariant measure and the Differential operator

• Invariant measure on L_2^{\uparrow} :

$$\Xi = \sum_{n=1}^{\infty} \Xi^n,$$

where Ξ^n is the distribution of $\sum_{k=1}^n \mathbb{I}_{[q_{k-1},q_k]} \times_k$ and points of jumps (q_1, \ldots, q_{n-1}) are distributed according to

$$d
u_{\xi}^{n} = 2^{n-1} \prod_{k=1}^{n} (q_{k} - q_{k-1}) d\xi(q_{1}) \dots \xi(q_{n-1}), \quad \text{on} \quad 0 = q_{0} < q_{1} < \dots < q_{n} = 1$$

and values of jumps (x_1, \ldots, x_n) are uniformly distributed on $x_1 \le x_2 \le \cdots \le x_n$. One can show that supp $\Xi = L_2^{\uparrow}(\xi) = \{f \in L_2^{\uparrow} : f \text{ is } \sigma(\xi)\text{-measurable}\}$

• Space of "smooth" functions:

$$\mathcal{F}_0 = \left\{ U = u((h_1, \cdot), \dots, (h_k, \cdot))\varphi(\|\cdot\|_{L_2}^2), \ u \in \mathcal{C}_b^2(\mathbb{R}^k), \ \varphi \in \mathcal{C}_0^2(\mathbb{R}), \ h_i \in L_2[0, 1] \right\};$$

Invariant measure and the Differential operator

• Invariant measure on L_2^{\uparrow} :

$$\Xi = \sum_{n=1}^{\infty} \Xi^n,$$

where Ξ^n is the distribution of $\sum_{k=1}^n \mathbb{I}_{[q_{k-1},q_k]} \times_k$ and points of jumps (q_1, \ldots, q_{n-1}) are distributed according to

$$d
u_{\xi}^{n} = 2^{n-1} \prod_{k=1}^{n} (q_{k} - q_{k-1}) d\xi(q_{1}) \dots \xi(q_{n-1}), \quad \text{on} \quad 0 = q_{0} < q_{1} < \dots < q_{n} = 1$$

and values of jumps (x_1, \ldots, x_n) are uniformly distributed on $x_1 \le x_2 \le \cdots \le x_n$. One can show that supp $\Xi = L_2^{\uparrow}(\xi) = \{f \in L_2^{\uparrow} : f \text{ is } \sigma(\xi)\text{-measurable}\}$

• Space of "smooth" functions:

 $\mathcal{F}_0 = \left\{ U = u((h_1, \cdot), \dots, (h_k, \cdot))\varphi(\|\cdot\|_{L_2}^2), \ u \in \mathcal{C}_b^2(\mathbb{R}^k), \ \varphi \in \mathcal{C}_0^2(\mathbb{R}), \ h_i \in L_2[0, 1] \right\};$

- Differential operator: $DU(g) = \operatorname{pr}_g \nabla^{L_2} U(g) \in L_2[0,1];$
 - (Ex. $Du((h,g)) = u'((h,g)) \operatorname{pr}_g h$, $D||g||_{L_2}^2 = 2g$)

Integration by parts and Dirichlet form

Integration by parts (K./ Renesse)

Let $U, V \in \mathcal{F}_0$. Then

$$egin{aligned} &\int_{L_2^\uparrow} (\mathsf{D}\, U(g),\mathsf{D}\, V(g)) \Xi(dg) = -\int_{L_2^\uparrow} L U(g) V(g) \Xi(dg) \ &-\int_{L^{\uparrow_2}} V(g) (
abla^{L_2} U(g), \xi - \mathsf{pr}_g \, \xi) \Xi(dg). \end{aligned}$$

 $(\mathsf{Examples}\ Lu((h,g)) = u''((h,g)) \| \operatorname{pr}_g h \|_{L_2}^2, \quad L \|g\|_{L_2}^2 = 2 \# g \big)$

Integration by parts and Dirichlet form

Integration by parts (K./ Renesse)

Let $U, V \in \mathcal{F}_0$. Then

$$egin{aligned} &\int_{L_2^\uparrow} (\mathsf{D}\, U(g),\mathsf{D}\, V(g)) \Xi(dg) = -\int_{L_2^\uparrow} LU(g) V(g) \Xi(dg) \ &-\int_{L^{\uparrow_2}} V(g) (
abla^{L_2} U(g), \xi - \mathsf{pr}_g\, \xi) \Xi(dg). \end{aligned}$$

 $(\mathsf{Examples}\ Lu((h,g)) = u''((h,g)) \| \operatorname{pr}_g h \|_{L_2}^2, \quad L \|g\|_{L_2}^2 = 2 \# g \Big)$

Dirichlet form:

$$\mathcal{E}(U,V) = rac{1}{2} \int_{L_2^{\uparrow}(\xi)} (\mathsf{D} U(g), \mathsf{D} V(g)) \Xi(dg), \quad U, V \in \mathcal{F}_0$$

Sticky-reflected particle system

Theorem (K./ Renesse)

 \mathcal{E} is a closable bilinear form on $L_2(L_2^{\uparrow}, \Xi)$, its closure is a quasi-regular local symmetric Dirichlet form and $\|\cdot\|_{L_2}$ is its intrinsic metric. Moreover, the associated Markov process X_t satisfies the following properties

• X_t solves

$$dX_t = \operatorname{pr}_{X_t} dW_t + (\xi - \operatorname{pr}_{X_t} \xi) dt$$
 in $L_2^{\uparrow}[0, 1]$

 The process µ_t = X(·, t)|_# Leb |_[0,1], that describes the evolution of particle mass, solves the equation

$$rac{\partial}{\partial t}\mu_t = rac{1}{2}\Delta\mu_t^* + {
m div}(\sqrt{\mu_t}\dot{W}_t), \quad {
m in} \,\, \mathcal{P}_2(\mathbb{R}),$$

where $\mu_t^* = \sum_{x \in \text{supp } \mu_t} \delta_x$ • $\mathbb{P}\{\mu_t = \nu\} \sim e^{-\frac{d_W^2(\mu_0, \nu)}{2t}}, \quad t \to +0.$

Thank you!

Coalescing particle model

- Konarovskyi, Renesse, Modified Massive Arratia flow and Wasserstein diffusion, Comm. Pure Appl. Math. (2019)
- Konarovskyi, A system of coalescing diffusion particles on ℝ, Ann. Prob. (2017)
- Konarovskyi, On asymptotic behavior of the modified Arratia flow, EJP (2017)
- Konarovskyi, Marx, On Conditioning Brownian Particles to Coalesce, arXiv:2008.02568

Sticky-reflected particle model

- Konarovskyi, Coalescing-Fragmentating Wasserstein Dynamics: particle approach, arXiv:1711.03011
- Konarovskyi, Renesse, Reversible Coalescing-Fragmentating Wasserstein Dynamics on the Real Line, arXiv:1709.02839

Dean-Kawasaki equation

- Lehmann, Konarovskyi, Renesse, Dean-Kawasaki dynamics: III-posedness vs. Triviality, Electron. Comm. Probab. (2019)
- Konarovskyi, Lehmann, Renesse, Dean-Kawasaki dynamics with smooth drift potential, J. Stat. Phys. (2020)