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Dean-Kawasaki Equation

Dean-Kawasaki Equation

The Dean-Kawasaki equation for non-interacting particle systems:

∂

∂t
µt =

α

2
∆µt +∇ ·

(√
µtẆt

)
It is used e.g. for description of particle density in the Langevin dynamics.
(K. Kawasaki ’94; D. Dean ’96; A. Donev, E. Vanden-Eijnden ’14, ’15; B. Derrida ’16. . . )

Definition of (martingale) solution

A continuous process µt ∈ P(Rd), t ≥ 0, is a solution to the Dean-Kawasaki
equation if, for every φ ∈ C2

b(Rd)

Mφ(t) = ⟨φ, µt⟩ − ⟨φ, µ0⟩ −
α

2

∫ t

0

⟨∆φ, µs⟩ds

is a martingale with quadratic variation∫ t

0

⟨|∇φ|2, µs⟩ds.
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Dean-Kawasaki Equation

Particle solutions to DK equation

Let Bk , k ∈ {1, . . . , n} =: [n], be independent Brownian motions with diffusion rate n.

Define the measure valued process

µt =
1

n

n∑
k=1

δBk (t), t ≥ 0.

By Ito’s formula,

⟨φ, µt⟩ =
1

n

n∑
k=1

φ(Bk(t)) = ⟨φ, µ0⟩+
1

2n

n∑
k=1

∫ t

0

∆φ(Bk(s))d(ns)

+
1

n

n∑
k=1

∫ t

0

∇φ(Bk(s)) · dBk(s)

Hence

Mφ(t) = ⟨φ, µt⟩ − ⟨φ, µ0⟩ −
n

2

∫ t

0

⟨∆φ, µs⟩ ds

is a martingale with q.v. [Mφ]t =
∫ t

0

〈
|∇φ|2, µs

〉
ds.
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Dean-Kawasaki Equation

DK equation: ill-posedness vs. triviality

Therefore,

µt =
1

n

n∑
k=1

δBk (t), t ≥ 0, (1)

is a solution to the DK equation

∂

∂t
µt =

α

2
∆µt +∇ ·

(√
µtẆt

)
with α = n.

Theorem (K./ Lehmann/ Renesse/ ’19)

Only for α = n ∈ N and µ0 = 1
n

∑n
k=1 δxk the DK equation has a solution.

Moreover, it is unique and defined by (1).
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Dean-Kawasaki Equation

Proof of the theorem: basic properties of solutions

∂

∂t
µt =

α

2
∆µt +∇ ·

(√
µtẆt

)
The equation preserves the total mass, i.e µt(Rd) = µ0(Rd).
Take φ ≡ 1. Then

µt(Rd ) = ⟨φ, µt⟩ = ⟨φ, µ0⟩+
∫ t

0
⟨∆φ, µs⟩ds +Mφ(t)

where the q.v. [Mφ]t =
∫ t
0 ⟨|∇φ|2, µs⟩ds = 0.

Laplace duality:
Ee−⟨f ,µt⟩ = e−⟨v(t),µ0⟩,

where v is a solution to the Hamilton-Jacobi equation:{
∂v
∂t

= α
2
∆v − 1

2
|∇v |2,

v |t=0 = f

dse
−⟨v(t−s),µs⟩ = e−⟨v(t−s),µs⟩

·
[
⟨−∂sv(t − s)−

α

2
∆v(t − s) +

1

2
|∇v(t − s)|2, µs⟩

]
ds + dM
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µtẆt

)
The equation preserves the total mass, i.e µt(Rd) = µ0(Rd).
Take φ ≡ 1. Then

µt(Rd ) = ⟨φ, µt⟩ = ⟨φ, µ0⟩+
∫ t

0
⟨∆φ, µs⟩ds +Mφ(t)

where the q.v. [Mφ]t =
∫ t
0 ⟨|∇φ|2, µs⟩ds = 0.

Laplace duality:
Ee−⟨f ,µt⟩ = e−⟨v(t),µ0⟩,

where v is a solution to the Hamilton-Jacobi equation:{
∂v
∂t

= α
2
∆v − 1

2
|∇v |2,

v |t=0 = f

dse
−⟨v(t−s),µs⟩ = e−⟨v(t−s),µs⟩

·
[
⟨−∂sv(t − s)−

α

2
∆v(t − s) +

1

2
|∇v(t − s)|2, µs⟩

]
ds + dM

Vitalii Konarovskyi (Bielefeld University) A particle model for Wasserstein type diffusion December 8, 2021 6 / 28



Dean-Kawasaki Equation

Proof of the theorem: generating function of µt(A)

H-J equation: {
∂v
∂t

= α
2
∆v − 1

2
|∇v |2,

v |t=0 = f

Solution to H-J equation: Vt f = −α ln
(
Pte

− 1
α
f
)
,

where u(t) = Ptg is the solution to the heat equation:{
∂u
∂t

= α
2
∆u,

u|t=0 = g

Lemma.

For A ⊂ Rd and t ≥ 0, one has

Esαµt (A) = eα⟨µ0,ln(1+(s−1)Pt IA)⟩, s > 0.

Ee−rαµt (A) = Ee−⟨µt ,rαIA⟩ = e−⟨µ0,Vt (rαIA)⟩

= e
−
〈
µ0,−α ln

(
Pt e

−rIA
)〉

= eα⟨µ0,ln(1+(e−r−1)Pt IA)⟩, r > 0
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Dean-Kawasaki Equation

Proof of the theorem: conclusion

Esαµt (A) = eα⟨µ0,ln(1+(s−1)Pt IA)⟩ t ≥ 0, A ⊂ Rd ;

Let A is bounded and t > 0 =⇒ PtIA ≤ 1− δ, for some δ > 0;

s 7→ eα⟨µ0,ln(1+(s−1)Pt IA)⟩ is well-defined and inf. diff. in a neighbourhood of 0;

Lemma.

Let ξ be a nonnegative random variable on R and ∀n ≥ 1

Esξ =
n∑

k=0

skpk + o(sn), s → 0 + .

Then ξ ∈ N ∪ {0} a.s. and P {ξ = k} = pk , k ≥ 0.

αµt(A) ∈ N ∪ {0};
Making A ↑ R, αµt(A) → α ∈ N;
Making t → 0+, we get µ0 =

1
α

∑α
i=1 δxi .
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Dean-Kawasaki Equation

DK equation for interacting particle systems

Dean-Kawasaki equation for interacting particle system:

∂

∂t
µt =

α

2
∆µt +∇ ·

(
µt∇

δF (µt)

δµt

)
+∇ ·

(√
µtẆt

)

Girsanov’s transformation d P̃ = eM
F (t)− 1

2
[MF ]tdP, where MF is the martingale part of

F (µt), t ≥ 0, gives that µt is a solution to

∂

∂t
µt =

α

2
∆µt +∇ ·

(√
µtẆt

)
on (Ω,F , P̃).

Theorem (K./ Lehmann/ Renesse ’20)

Let F ∈ C2
b(MF (Rd)). Then the Dean-Kawasaki equation has a solution only for

α = n ∈ N and µ0 =
1
n

∑n
k=1 δxk . Moreover, it is uniquely defined by

µt =
1

n

n∑
k=1

δXk (t), t ≥ 0.
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Coalescing particle system: non-reversible case
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Coalescing particle system: non-reversible case

Corrected Dean-Kawasaki equations

∂

∂t
µt =

α

2
∆µt +∇ ·

(√
µtẆt

)
Correction of diffusion:

∂

∂t
µt =

α

2
∆µt +∇ ·

(
σ(µt)Ẇ

c
t

)
J. Zimmer, F. Cornalba, T. Shardlow, B. Gess, B. Fehrman, M. Mariani. . .

Well-posedness;
LDP;
Particle approximation, etc.

Correction of “drift”

∂

∂t
µt = Γ(µt) +∇ ·

(√
µtẆt

)
M. von Renesse, S. Andres, L. Dello Schiavo, V. Marx. . .

Connection with geometry of the Wasserstein space;
Assymptotic behaviour;
Particle approximation, etc.
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Coalescing particle system: non-reversible case

Main goal

Goal: propose a system of interacting diffusion particles on R with masses such that the
associated measure-valued process is a weak solution to a corrected Dean-Kawasaki
equation

∂

∂t
µt = Γ(µt) +∇ ·

(√
µtẆt

)

Why the model can be interesting:

The interesting particle system is a physical improvement of already existing models.

The model satisfies the Varadhan formula for short times which is governed by the
quadratic Wasserstein distance.

In reversible case, it has a new invariant measure on the space of probability
measures on R with full support.

It is a (non-unique) particle solution to a corrected Dean-Kawasaki equation on
P(R).
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µtẆt

)
Why the model can be interesting:

The interesting particle system is a physical improvement of already existing models.

The model satisfies the Varadhan formula for short times which is governed by the
quadratic Wasserstein distance.

In reversible case, it has a new invariant measure on the space of probability
measures on R with full support.

It is a (non-unique) particle solution to a corrected Dean-Kawasaki equation on
P(R).

Vitalii Konarovskyi (Bielefeld University) A particle model for Wasserstein type diffusion December 8, 2021 12 / 28



Coalescing particle system: non-reversible case

Main goal

Goal: propose a system of interacting diffusion particles on R with masses such that the
associated measure-valued process is a weak solution to a corrected Dean-Kawasaki
equation

∂

∂t
µt = Γ(µt) +∇ ·

(√
µtẆt

)
Why the model can be interesting:

The interesting particle system is a physical improvement of already existing models.

The model satisfies the Varadhan formula for short times which is governed by the
quadratic Wasserstein distance.

In reversible case, it has a new invariant measure on the space of probability
measures on R with full support.

It is a (non-unique) particle solution to a corrected Dean-Kawasaki equation on
P(R).

Vitalii Konarovskyi (Bielefeld University) A particle model for Wasserstein type diffusion December 8, 2021 12 / 28



Coalescing particle system: non-reversible case

Main goal

Goal: propose a system of interacting diffusion particles on R with masses such that the
associated measure-valued process is a weak solution to a corrected Dean-Kawasaki
equation

∂

∂t
µt = Γ(µt) +∇ ·

(√
µtẆt
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Coalescing particle system: non-reversible case

Key observation

Let X1 and X2 be independent continuous semimartingales with quadratic variation

[Xk ]t = akt

Consider
µt = m1δX1(t) +m2δX2(t), t ≥ 0

Observation: µt is a solution to a corrected Dean-Kawasaki equation

∂

∂t
µt = Γ(µt) +∇ ·

(√
µtẆt

)
with some Γ, (i.e, [⟨φ, µ⟩]t =

∫ t

0
⟨(φ′)2, µs⟩ds) iff

ak =
1

mk

=⇒ We can not construct a solution to the DK equation with some Γ started
from the Lebesgue measure on [0, 1], where massive particles move as independent,
e.g., Brownian motions.
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Coalescing particle system: non-reversible case

A coalescing particle system

Modified massive Arratia flow on R
Brownian particles start from points with masses;

they move independently and coalesce after meeting;

particles sum their masses after meeting and diffusion rate is inversely proportional
to the mass.

The model is a physical improvement of the Arratia flow, where particles do not change
their diffusion rates.
(Arratia ’79; Le Jan, Raimond ’04; Schertzer, Sun, Swart ’14; Berestycki, Garban, Sen ’15)
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Coalescing particle system: non-reversible case

Mathematical description of MMAF

Theorem (K., ’17)

There exists a family of continuous processes X (u, t), t ≥ 0, u ∈ [0, 1] such that

1 X (u, 0) = u, u ∈ [0, 1];

2 X (u, ·) is a continuous martingale;

3 X (u, t) ≤ X (v , t), u < v ;

4 ⟨X (u, ·),X (v , ·)⟩t =
∫ t

0

I{X (u,s)=X (v,s)}
m(u,s)

ds, m(u, s) = Leb{w : X (w , t) = X (u, t)}.

X (u, t) is the position of particle at time t started from u ∈ [0, 1]
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Coalescing particle system: non-reversible case

MMAF as a solution to corrected DK equation

Theorem (K./ Renesse ’19)

The evolution of particle masses µt = X (·, t)# Leb satisfies the equation

∂

∂t
µt =

1

2
∆µ∗

t +∇ · (√µtẆt),

with µ∗
t =

∑
x∈suppµt

δx and µ0 = Leb |[0,1].
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Coalescing particle system: non-reversible case

Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

p(t, x , y) =
1

(2πt)n/2
e−

∥x−y∥2
2t ∼ e−

∥x−y∥2
2t , t → 0 + .

Generalizations

Heat equation with variable coefficients in Rn (Varadhan (CPAM ’67))

Smooth Riemannian manifold with Ricci curvature bound
(P. Li and S.-T. Yau (Acta Math. ’86))

Lipschitz Riemannian manifold without any sort of curvature bounds
(J. Norris (Acta Math. 97))

Infinite-dimensional case for heat kernel generated by a Dirichlet form
(J. Raḿırez (CPAM ’01, Ann. Prob ’03))

Corollary
If Bt , t ≥ 0, is a Brownian motion on a Riemannian manifold, then

Px {Bt = y} ∼ e−
d2(x,y)

2t , t → 0+,

with d being the Riemannian distance.
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Coalescing particle system: non-reversible case

Connection with optimal transport

Theorem (K./ Renesse ’19)

The process µt = Y (·, t)
∣∣
#
Leb, t ≥ 0, which describes the evolution of particle

masses in the modified massive Arratia flow satisfies Varadhan’s formula

P{µt = ν} ∼ e−
d2W (µ0,ν)

2t , t → 0+,

with the quadratic Wasserstein distance dW in R.

Quadratic Wasserstein distance: dW (ν1, ν2) = inf
ξ1∼ν1,ξ2∼ν2

(
E|ξ1 − ξ2|2

) 1
2

(P2(R), dW) has an inf.-dim. Riemannian structure (F. Otto (JFA, ’01)).
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Coalescing particle system: non-reversible case

Idea of proof of Varadhan’s formula

Idea of proof of P{µt = ν} ∼ e−
d2W (µ0,ν)

2t , t → 0+:

Since X (u, t) ≤ X (v , t) for u < v , one can show that X (·, t), t ≥ 0, is a continuous
process in L↑

2 ⊂ L2[0, 1].

{X (·, εt), t ∈ [0,T ]}ε>0 satisfies the LDP in C([0,T ], L↑
2 ) with rate function

I (φ) =

{
1
2

∫ T

0
∥φ̇(t)∥2L2dt, φ ∈ H2

id([0,T ], L↑
2 ),

+∞, otherwise.

H2
id([0, T ], L

↑
2
) =

{
φ ∈ C([0, T ], L

↑
2
) : φ(t) = id +

∫ t
0 φ̇(t)dt,

∫T
0 ∥φ̇(t)∥2L2

dt < +∞
}

By contraction principle, {X (ε)}ε>0 satisfies the LDP in L↑
2 with the rate function

I (g) =
1

2
∥id− g∥2L2 , g ∈ L↑

2 .

We use the isometry ∥g − f ∥L2 = dW(νg , νf ), where νg = g# Leb |[0,1] and
νf = f# Leb |[0,1], g , f ∈ L↑

2 .
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Sticky-reflected particle system: reversible case
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Sticky-reflected particle system: reversible case

Sticky-reflected interaction

Can we replace the coalescing by another type of interaction which would give a
model reversible in time?

Remind that the coalescing particle system X satisfies the following properties:

1 X (u, 0) = , u ∈ [0, 1]

, where g ↑;

2 X (u, ·) is a continuous martingale

, where π(u, t) = {v : X (u, t) = X (v , t)} and
ξ ↑;

3 X (u, t) ≤ X (v , t), u < v ;

4 ⟨X (u, ·),X (v , ·)⟩t =
∫ t

0

I{X (u,s)=X (v,s)}
m(u,s)

ds, m(u, s) = Leb{w : X (w , t) = X (u, t)}.

X (u, t) is the position of particle at time t started from
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Sticky-reflected particle system: reversible case

Role of function ξ

Remind that X (u, ·)−
∫ t

0

(
ξ(u)− 1

m(u,s)

∫
π(u,s)

ξ(r)dr
)
ds is a continuous martingale,

where π(u, t) = {v : X (u, t) = X (v , t)} and ξ ↑.

If ξ = 0, then particles coalesce.

If ξ(u) = ξ(v), then particles u and v coalesce after the meeting:
because the drifts of X (u, ·) and X (v , ·) at time s are equal after the meeting

ξ(u)− 1

m(u, s)

∫
π(u,s)

ξ(u)du = ξ(v)− 1

m(v , s)

∫
π(v,s)

ξ(r)dr ,

since π(u, s) = π(v , s) for X (u, s) = X (v , s).

If particle u is alone, i.e. π(u, t) = {u}, then it has no drift.
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m(u, s)

∫
π(u,s)

ξ(u)du = ξ(v)− 1

m(v , s)

∫
π(v,s)

ξ(r)dr ,

since π(u, s) = π(v , s) for X (u, s) = X (v , s).

If particle u is alone, i.e. π(u, t) = {u}, then it has no drift.
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g(u) = 0, ξ(u) = u, u ∈ (0, 1)

The model is similar to the Howitt-Warren flow. The main difference is
that in our case particles change the diffusion rate.
(Howitt, Warren ’09; Schertzer, Sun, Swart ’14)



Sticky-reflected particle system: reversible case

SDE for the particle system

One can show that X (·, t) is a continuous process in L↑
2 ⊂ L2[0, 1],

if, e.g., g , ξ ∈ L2+ε.

The conditions

X (u, ·)−
∫ t

0

(
ξ(u)− 1

m(u, s)

∫
π(u,s)

ξ(r)dr

)
ds is a continuous martingale

and

⟨X (u, ·),X (v , ·)⟩t =
∫ t

0

I{X (u,s)=X (v,s)}

m(u, s)
ds

can be formally rewritten as

dX (u, t) =
1

m(u, t)

∫ 1

0

Iπ(u,t)W (dr , dt) +

(
ξ(u)− 1

m(u, t)

∫ 1

0

Iπ(u,t)ξdr

)
dt,

where π(u, t) = {v : X (u, t) = X (v , t)}, m(u, t) = Leb(π(u, t)), and W is a
cylindrical Wiener process in L2[0, 1].
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Sticky-reflected particle system: reversible case

SDE in L↑2 for the particle system

The family of equations

dX (u, t) =
1

m(u, t)

∫ 1

0

Iπ(u,t)W (dr , dt) +

(
ξ(u)− 1

m(u, t)

∫ 1

0

Iπ(u,t)ξdr

)
dt,

can be rewritten as one equation but in L↑
2 ⊂ L2[0, 1]:

dXt = prXt
dWt + (ξ − prXt

ξ)dt in L↑
2 ,

where Xt := X (·, t) and prg is the projection in L2[0, 1] onto

L2(g) = {f : f is σ(g)-measurable}

Vitalii Konarovskyi (Bielefeld University) A particle model for Wasserstein type diffusion December 8, 2021 24 / 28



Sticky-reflected particle system: reversible case

Invariant measure and the Differential operator

Invariant measure on L↑
2 :

Ξ =
∞∑
n=1

Ξn,

where Ξn is the distribution of
∑n

k=1 I[qk−1,qk )xk and points of jumps (q1, . . . , qn−1)
are distributed according to

dνn
ξ = 2n−1

n∏
k=1

(qk − qk−1)dξ(q1) . . . ξ(qn−1), on 0 = q0 < q1 < · · · < qn = 1

and values of jumps (x1, . . . , xn) are uniformly distributed on x1 ≤ x2 ≤ · · · ≤ xn.

One can show that suppΞ = L↑
2 (ξ) = {f ∈ L↑

2 : f is σ(ξ)-measurable}

Space of “smooth” functions:

F0 =
{
U = u((h1, ·), . . . , (hk , ·))φ(∥ · ∥2L2), u ∈ C2

b(Rk), φ ∈ C2
0(R), hi ∈ L2[0, 1]

}
;

Differential operator: DU(g) = prg ∇L2U(g) ∈ L2[0, 1];

(Ex. Du((h, g)) = u′((h, g)) prg h, D∥g∥2
L2

= 2g)
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Sticky-reflected particle system: reversible case

Integration by parts and Dirichlet form

Integration by parts (K./ Renesse)

Let U,V ∈ F0. Then∫
L
↑
2

(DU(g),DV (g))Ξ(dg) = −
∫
L
↑
2

LU(g)V (g)Ξ(dg)

−
∫
L↑2

V (g)(∇L2U(g), ξ − prg ξ)Ξ(dg).

(Examples Lu((h, g)) = u′′((h, g))∥ prg h∥2
L2
, L∥g∥2

L2
= 2#g)

Dirichlet form:

E(U,V ) =
1

2

∫
L
↑
2 (ξ)

(DU(g),DV (g))Ξ(dg), U,V ∈ F0
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Sticky-reflected particle system: reversible case

Sticky-reflected particle system

Theorem (K./ Renesse)

E is a closable bilinear form on L2(L
↑
2 ,Ξ), its closure is a quasi-regular local sym-

metric Dirichlet form and ∥ · ∥L2 is its intrinsic metric. Moreover, the associated
Markov process Xt satisfies the following properties

Xt solves
dXt = prXt

dWt + (ξ − prXt
ξ)dt in L↑

2 [0, 1]

The process µt = X (·, t)|# Leb |[0,1], that describes the evolution of particle
mass, solves the equation

∂

∂t
µt =

1

2
∆µ∗

t + div(
√
µtẆt), in P2(R),

where µ∗
t =

∑
x∈suppµt

δx

P{µt = ν} ∼ e−
d2W (µ0,ν)

2t , t → +0.
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Sticky-reflected particle system: reversible case

Thank you!
1 Coalescing particle model
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