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Sticky-reflected stochastic heat equation

Sticky-reflected stochastic heat equation on [0, 1]
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Sticky-reflected stochastic heat equation

Sticky-reflected stochastic heat equation on [0, 1]

oX, _10°X,
or 2 ou?

+)‘]I{Xt 0} +]I{Xt>O}Wt
Xo=9¢>0, X,(0)=X,(1)=0
where A > 0

It is similar to the SDE for sticky-reflected Brownian motion

dz(t) = Ng@)=0ydt + Tz)>oydw(t)
z(0)=120>0

— only weak existence and uniqueness in law! (Engelbert and Peskir, 2014)
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Reason of investigation

o Sticky-reflected SHE vs. Reflected SHE

(Nulart and Pardoux, 1992)
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Reason of investigation

o Sticky-reflected SHE vs. Reflected SHE

(Nulart and Pardoux, 1992)
0xXy 1 0’ X,
ot 2 ou?

+ 60(X) + Wi
o Possible connection with wetting dynamics
(Deuschel, Giacomin, Zambotti, 2004)

o A new method of solving SDEs with discontinuous coefficients

o>



Formulation of the main result
Sticky-reflected SHE
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Formulation of the main result

Sticky-reflected SHE:
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where () is non-negative definite self-adjoint Hilbert-Schmidt operator in L5[0, 1]



Formulation of the main result
Sticky-reflected SHE

8Xt 1 8 Xt
8t = 2 au2 + /\H{Xt =0} + H{Xt>0}QWt
Xo—gZO, Xt(O):Xt(l)—O

where () is non-negative definite self-adjoint Hilbert-Schmidt operator in L5[0, 1]
Solution to sticky-reflected SHE
A continuous process X : [0,00) x [0, i
the sticky-reflected SHE if for any ¢ € C2[0, 1] with
.
t

[0,1] — R is called a weak solution to

©(0) = (1) =0

ME = (Xeg) = Xo) = 5 [ Kud? o= [ Qlie,oap0)d

is a martingale with quadratic variation

t
(M%), = / 10 x, 503012, ds
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Formulation of the main result

Let {ex, k> 1} and {ux, k > 1} be eigenvectors and eigenvalues of (). Define

o0

2 ._ 2.2

X -—Zﬂkek-
k=1
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Formulation of the main result

Let {ex, k> 1} and {ux, k > 1} be eigenvectors and eigenvalues of (). Define

If x? > 0 a.e., then the sticky-reflected SHE admits a weak solution
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Meaning of assumtion y? > 0

The equation

dz(t) = )\]I{gc(t):()}dt
z(0) =0

has no solution



Meaning of assumtion y? > 0

The equation

dz(t) = )\]I{gc(t):()}dt + ]I{J;(t>>0}dw(t)
z(0) =0

has ne-selution a weak solution



Meaning of assumtion y< > 0

The equation

dz(t) = )\]I{x(t):()}dt + ]1{',1 (f>>0}du7( )
z(0)=0

has ne-selution a weak solution

X = > i_1 Mier > 0 means that the solution X to the equation
0X, 19°X,
ot 2 ou?

+ M x,—0} + I{x, 50, QW:
feels a noise at any point of [0, 1]
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Description of the idea of construction of solution

using the equation

dx(t) = )\H{m(t)zo}dt + H{x(t)>0}dw<t)



Approximating sequence

Consider the SDE for sticky-reflected BM:

dz(t) = Mz =0ydt + Lizr)>oydw(t),
x(0) = zg > 0.
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Approximating sequence
Consider the SDE for sticky-reflected BM:
dx(t) = Myzy—0ydt + Liz)>0ydw(t),

x(0) = zg > 0.

We approximate its solution by the solutions to the SDEs
dz, (t) = N1 — K2 (2, (8))dt + k5, (2, (1)) dw(t),

2, (0) = 2.

which have non-negative strong solutons x,,(t) > 0

Hn(y) — H{y>0}a

11
1—r2(y) = 1— ]I%PO} = T{y—0}

f,
for y >0, as n — oo.




Problem of approximation

One can show that {z,,, n > 1} is tight in C[0,7] and
{k2(2,), n > 1} is tight in L?[0, 7] in weak topology

I
T, —x in C[0,T] and k2(x,) — p® in Ly[0,T] in weak t.

along a subsequence.



Problem of approximation

One can show that {z,,, n > 1} is tight in C[0,7] and
{k2(2,), n > 1} is tight in L?[0, 7] in weak topology

Ty — T

I
in C[0,7] and &KZ(x,) — p®> in L[0,T] in weak t.
along a subsequence.
But
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Problem of approximation

One can show that {z,,, n > 1} is tight in C[0,7] and
{k2(2,), n > 1} is tight in L?[0, 7] in weak topology

Ty — T

I
in C[0,7] and &Z(x,) — p®> in Lp[0,7] in weak t
along a subsequence
But
t
M, (t) := — Zo —|—/ M1 = g (z,(5)))ds
0
2 \
t
M(t):==x —|—/ A1 —
0
[Mn]t :/ 'Tn d3_>/ dS—
Why p?(s) = I{z(s)>03

DHa



Two observations

o K (Yn) A Liy>0) S Yn — Y.
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Two observations

o Tiysophn(Yn)—=Tiyso0} as yn = .




Two observations

° H{y>0}"f%(yn)_>]l{y>0} as Yp — Y.

o If z is a continuous non-negative semimartingale with q.v.

then [z]; = fot 2550307 (5)ds.
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Two observations

o Igy~oy6s (Yn)—=Iiy>0} 3 Yn — .

o If z is a continuous non-negative semimartingale with q.v.

\
o= [ as

then [l‘]t = f(f H{x(s)>0}0'2(8)d8.
Proof.

t . t
/O 2 ()T a(ey—0y s = /0 Ty (2(s))dlz]s

where LY is the local time of z at y.

00
/ Ioy () LY da = 0,
— 00



Identification of quadratic variation

Remind

M(t) = 2 (t) — w0 + /O A1 = K2 (2n(s)))ds
+ +

1
t
z(t) —xo +/(; A1 — p%(s))ds

t t
(Mo, = /0 W2 (0 (5))ds — /0 P (s)ds = [M],



Identification of quadratic variation

Remind

Mp(t) == zn(t) — x0 + /Ot A1 = k2 (zn(s)))ds
1 4

1
t
z(t) —xo +/(; A1 — p%(s))ds

t t
(Mo, = /0 W2 (0 (5))ds — /0 P (s)ds = [M],

t t
/ p2(5)d8 = /0 H{m(s)>0}p2(‘s)ds
0

t
:hm/ H{x(5)>()}/‘$i
mJo

Therefore,

t
(2n(s))ds = / La(eys0yds
0

DHa



Proof of existence of solution to

sticky-reflected SHE

0X; 10°X,

R + Alx,=0) + H{Xt>O}QWt




Discrete equation

We discretize only the space variable u € [0, 1] by Jk=1,...,n.

Set ) = H[k Lk and define

\/_/ / (Qmi)(w)W (du, ds)
Consider the following SDE
1
dag(t) = iAnIL‘ (t)dt + ]I{mk(t):()}dt = \/ﬁﬂ{mk(t >0}dwk( ), k=1,...,n,
with 2o(t) = 2,11(t) =0 and A"zy, = n? (Tpe1 + Tp_1 — 27%)




Tightness of linear approximation
Define

X[ (u) = (un —k+ Dap(t) + (k — nu)xp_ (1)

tel0,T), uemp.



Tightness of linear approximation
Define

XMu) = (un —k + 1)zl (t) + (k — nu)zp_ (1),

tel0,T], uemny
Then X" >0 and X" € C([0,T],C[0,1]) as.

The family of processes {X™, n > 1} is tight in C ([0, 7], C[0, 1])
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Tightness of linear approximation

Define

XMu) = (un — k + 1)z (t) + (k —nu)zl_,(t), te€[0,T], uenp.

Then X" >0 and X" € C([0,T],C[0,1]) a.s

The family of processes {X™, n > 1} is tight in C ([0, 7], C[0, 1])

Idea of Proof.
1
Xf(u):/ p"(t,u,v)g(v dv+)\/ / p"(t — s,u, U)H{Xﬂ([ﬂ) O}dsdv

/ / (t —s,u,v ]I{Xn((ﬂ)x)}QdWSdu

By properties of the discrete heat semigroup p”, for every v > 0, T' > 0,

E [(X;l(u))V] <C and E [p?gl(u) - XS(U)W] <c (\t —slF v|%)

u]
Q
I
n
tht
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Martingale problem for X™

Set




Martingale problem for X™

Set

" k—1
th(u) = ZCk(t),
Remark that X™ > 0.




Martingale problem for X"

Set

n k—1
Xt (u) = mk(t)7
Remark that X™ > 0.

, welo,1].
For every ¢ € C2[0, 1] with ¢(0)

= (1) =0,

t
MPE = (0 ) = (X0 - 5 [ (xn Ang)ds -
0 0

is a martingale with q.v.

t
(Iixp=oy, ) ds

t 2
[M”"”]t:/o 1QUixrs019)]|” ds
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Convergence result

For every ¢ € C?[0,1] with ¢(0)

©(1) = 0, along a subsequence
t t

MPE = (Xp ) - (X5) - 5 [ (XnAne)ds—a [

2 Jo 0

(Iixp=oy, ) ds

is a continuous martingale with quadratic variation

t
[Mn’w]t:/O ||Q(H{X;L>0}<P)||2d3
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Convergence result

For every ¢ € C?[0,1] with ¢(0)

©(1) = 0, along a subsequence

n n n 1 ! n AN !
M = (X7, 0) — (X2 ) —5/0 (x2,A"p) ds—A/O (Iixso}, ) ds
3 1 \ 3 1
1 [t t
M= (Xug) = Xop) =5 [ Xapds —a [ (1-ong)ds
0 0
is a continuous martingale with quadratic variation

t 9 t 5
el = [ QQcsor0)|Pds = [ 1QG)I ds = (M7,
0 0
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Convergence result

For every ¢ € C?[0,1] with ¢(0)

(1) =0, along a subsequence

n n n 1 ! n AN !
M = (X7, 0) — (X2 ) —5/0 (x2,A"p) ds—A/O (Iixso}, ) ds
3 1 \ 3 1
1 [t t
M= (Xug) = Xop) =5 [ Xapds —a [ (1-ong)ds
0 0
is a continuous martingale with quadratic variation

0X4

t t
n 2
= [ Qs s [ 10w ds = 7]
Equivalently

0X, _10°X,
ot 2 du?

+ M1 —0y) + 0, QW
X(0) = X¢(1) =0

X()(’u) = g(u)
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Identification of coefficient o

Let X solves the equation

0X: 18X,

W,
B T3 ow T

Xi(0) = X;(1) =0, Xo(u) = g(u)
and X > 0. Then gy = H{X >0}0¢t

o>



Identification of the coefficients

We come back to our equation with undefined coefficients:

oX, _10°
at 2 ou?

+ )\(1 — O't) + O'tQW,
Xt(O) - Xt(].) == 0,

Xo(u) = g(u),

X > 0.
By the previous proposition,

o1(w) = Lix, >030t(w) = ImIix, >0 lixp w>0p = Lix, (w)>0)
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Identification of the coefficients

We come back to our equation with undefined coefficients

0X, 19%°X
aftt 350 o+ Mx, o) + [[x,50,QW,
X:(0)=X;(1) =0, Xo(u)=

g(u),

X > 0.
By the previous proposition

o1(w) = Lix, >030t(w) = ImIix, >0 lixp w>0p = Lix, (>0
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|dea of proof of the key proposition

Let X solves the equation
0Xy 102Xy
ot

1
T2

Su2 T ot oQWr,
Xi(0) = X¢(1) =0,  Xo(u) = g(uw).
and X > 0. Then ass. oy = I x,~0y0¢ for t-a.e.




[to's formula

Lemma. (Ito’s formula)
Assume that F' € C%(R) has a bounded second derivative. Then
(F(X1),1) = (F(Xo),1) =

%/0 <F//(XS)XS,XS>ds+/O (F'(Xs),as)ds
+3 | QU (X)L Qo s ds + M),
where

[(Mr], = / |QlouF' (X,)][?ds
and

oo

X, = Z<Xt,6k>6;c, ex(u) = V2sintku
k=1




[to's formula

Lemma. (Ito’s formula)
Assume that F' € C%(R) has a bounded second derivative. Then
(F(X1),1) = (F(Xo),1) =

%/0 <F//(XS)XS,XS>ds+/O (F'(Xs),as)ds
+3 | QU (X)L Qo s ds + M),
where

[(Mr], = / |QlouF' (X,)][?ds
and

oo

X, = Z<Xt,6k>6;c, ex(u) = V2sintku
k=1

[m]

Idea of Proof. Idea of proof: Apply usual Ito’s formula to (F(Z{*),1) for Z* = >7_ 1 (X¢, ex)ep

=
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Proof of the key proposition

Take
O I G A

0< Fl(x) <2, F!'(x)—Tpy()

g

o = = = = o>



Proof of the key proposition

Take
O I G A

0< Fl(x) <2, F!'(x)—Tpy()

g

Apply Ito’s formula to F.:

(R0 = 01 = 3 [ (R0 %0 s+ [ (R0, 00 0

43 | (@ ()1 QLoD ds + M ()

o = = = = o>



Proof of the key proposition
Take

nw= [ OO / yoo e (r)dydr,

1L (18
0< Fl(z) <2, F!(x)— I (z) ‘ ‘
Apply Ito’s formula to F.:
1
(Fe(Xy) = Fe(Xo),1) = —3

L1
2

/ (Proc)Xe X s+ [ (PICK) 00)ds
| Qo ()1, QU] s s+ M (1),

Hence all green terms — 0 and red term — ]Ot (Qloslix,=0y], Qlos])

Hsds:()



Proof of the key proposition
Take

nw= [ Oo / yoo e (r)dydr,

1L (18
0< Fl(z) <2, F!(x)— I (z) ‘ ‘
Apply Ito’s formula to F.:
1
(Fe(Xy) = Fe(Xo),1) = —3

L1
2

/ (Proc)Xe X s+ [ (PICK) 00)ds
| Qo ()1, QU] s s+ M (1),

Hence all green terms — 0 and red term — ]Ot (Qloslix,=0y], Qlos])
= We can replace o by I{x ~0y05s

HSdszO



Open problem and references

Open problems:

o Is a solution to the equation unique?
o Does the solution of the equation with the identity operator () exists?
o What is the invariant measure for the dynamics?

o How much time does the equation spend at zero?

[% Vitalii Konarovskyi,
Sticky-Reflected Stochastic Heat Equation Driven by Colored Noise
Ukrain. Math. J., Vol. 72, no. 9, 2021
(arXiv:2005.11773)

ﬁ Vitalii Konarovskyi,

Coalescing-Fragmentating Wasserstein Dynamics: particle approach
(arXiv:1711.03011)
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Thank you for your attention!



