A particle model for Wasserstein type diffusion

Vitalii Konarovskyi
Hamburg University
Kolloquium über Mathematische Statistik und Stochastische Prozesse, 2020

Dean-Kawasaki Equation

Systems of interacting particles in random environment

Consider a system of SDEs in \mathbb{R}^{d}

$$
\begin{aligned}
d x_{i}(t) & =-\sum_{j=1}^{n} \nabla V\left(x_{i}(t)-x_{j}(t)\right) d t+\sqrt{n} d w_{i}(t) \\
x_{i}(0) & =x_{i}^{0}, \quad i=1, \ldots, n
\end{aligned}
$$

where w_{i} are independent Brownian motions and V is an interaction potential

Systems of interacting particles in random environment

Consider a system of SDEs in \mathbb{R}^{d}

$$
\begin{aligned}
d x_{i}(t) & =-\sum_{j=1}^{n} \nabla V\left(x_{i}(t)-x_{j}(t)\right) d t+\sqrt{n} d w_{i}(t) \\
x_{i}(0) & =x_{i}^{0}, \quad i=1, \ldots, n
\end{aligned}
$$

where w_{i} are independent Brownian motions and V is an interaction potential

This system of equation is not convenient for description of a large particle system

Evolution of particle mass

Let $V=0$ (no interaction) and $d=1$. Take

$$
\mu_{t}:=\sum_{i=1}^{n} \frac{1}{n} \delta_{x_{i}(t)}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\sqrt{n} w_{k}(t)}, \quad t \geq 0 .
$$

Use Ito's formula to $\left\langle\varphi, \mu_{t}\right\rangle=\int_{R} \varphi d \mu_{t}=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}(t)\right)$:
where M_{t}^{φ} is a martingale with q.v.

Evolution of particle mass

Let $V=0$（no interaction）and $d=1$ ．Take

$$
\mu_{t}:=\sum_{i=1}^{n} \frac{1}{n} \delta_{x_{i}(t)}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\sqrt{n} w_{k}(t)}, \quad t \geq 0 .
$$

Use Ito＇s formula to $\left\langle\varphi, \mu_{t}\right\rangle=\int_{R} \varphi d \mu_{t}=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}(t)\right)$ ：

$$
\begin{aligned}
d\left\langle\varphi, \mu_{t}\right\rangle & =\frac{1}{2 n} \sum_{i=1}^{n} \varphi^{\prime \prime}\left(x_{i}(t)\right) n d t+\frac{1}{n} \sum_{i=1}^{n} \varphi^{\prime}\left(x_{i}(t)\right) d x_{i}(t) \\
& =\frac{n}{2}\left\langle\varphi^{\prime \prime}, \mu_{t}\right\rangle d t+d M_{t}^{\varphi}
\end{aligned}
$$

where M_{t}^{φ} is a martingale with q．v．

Evolution of particle mass

Let $V=0$ (no interaction) and $d=1$. Take

$$
\mu_{t}:=\sum_{i=1}^{n} \frac{1}{n} \delta_{x_{i}(t)}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\sqrt{n} w_{k}(t)}, \quad t \geq 0 .
$$

Use Ito's formula to $\left\langle\varphi, \mu_{t}\right\rangle=\int_{R} \varphi d \mu_{t}=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}(t)\right)$:

$$
\begin{aligned}
d\left\langle\varphi, \mu_{t}\right\rangle & =\frac{n}{2} \frac{1}{n} \sum_{i=1}^{n} \varphi^{\prime \prime}\left(x_{i}(t)\right) d t+\frac{1}{n} \sum_{i=1}^{n} \varphi^{\prime}\left(x_{i}(t)\right) d x_{i}(t) \\
& =\frac{n}{2}\left\langle\varphi^{\prime \prime}, \mu_{t}\right\rangle d t+d M_{t}^{\varphi}
\end{aligned}
$$

where M_{t}^{φ} is a martingale with q.v.

Evolution of particle mass

Let $V=0$ (no interaction) and $d=1$. Take

$$
\mu_{t}:=\sum_{i=1}^{n} \frac{1}{n} \delta_{x_{i}(t)}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\sqrt{n} w_{k}(t)}, \quad t \geq 0 .
$$

Use Ito's formula to $\left\langle\varphi, \mu_{t}\right\rangle=\int_{R} \varphi d \mu_{t}=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}(t)\right)$:

$$
\begin{aligned}
d\left\langle\varphi, \mu_{t}\right\rangle & =\frac{n}{2} \frac{1}{n} \sum_{i=1}^{n} \varphi^{\prime \prime}\left(x_{i}(t)\right) d t+\frac{1}{n} \sum_{i=1}^{n} \varphi^{\prime}\left(x_{i}(t)\right) d x_{i}(t) \\
& =\frac{n}{2}\left\langle\varphi^{\prime \prime}, \mu_{t}\right\rangle d t+d M_{t}^{\varphi}
\end{aligned}
$$

where M_{t}^{φ} is a martingale with q.v.

$$
\left[M^{\varphi}\right]_{t}=\frac{n}{n^{2}} \int_{0}^{t} \sum_{i=1}^{n} \varphi^{\prime}\left(x_{i}(s)\right)^{2} d t=\int_{0}^{t}\left\langle\left(\varphi^{\prime}\right)^{2}, \mu_{s}\right\rangle d s
$$

Dean－Kawasaki equation

For every $\varphi \in \mathrm{C}_{b}^{2}(\mathbb{R})$ the process $\mu_{t}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\sqrt{n} w_{i}(t)}$ satisfies

$$
\left\langle\varphi, \mu_{t}\right\rangle=\left\langle\varphi, \mu_{0}\right\rangle+\frac{n}{2} \int_{0}^{t}\left\langle\varphi^{\prime \prime}, \mu_{s}\right\rangle d s+M_{t}^{\varphi}
$$

where M^{φ} is a martingale with q．v．

$$
\left[M^{\varphi}\right]_{t}=\int_{0}^{t}\left\langle\left(\varphi^{\prime}\right)^{2}, \mu_{s}\right\rangle d s
$$

Formally，μ_{t} solves the equation

Dean－Kawasaki equation for $\alpha=n$ and $V=0$

Dean-Kawasaki equation

For every $\varphi \in \mathrm{C}_{b}^{2}(\mathbb{R})$ the process $\mu_{t}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\sqrt{n} w_{i}(t)}$ satisfies

$$
\left\langle\varphi, \mu_{t}\right\rangle=\left\langle\varphi, \mu_{0}\right\rangle+\frac{n}{2} \int_{0}^{t}\left\langle\varphi^{\prime \prime}, \mu_{s}\right\rangle d s+M_{t}^{\varphi}
$$

where M^{φ} is a martingale with q.v.

$$
\left[M^{\varphi}\right]_{t}=\int_{0}^{t}\left\langle\left(\varphi^{\prime}\right)^{2}, \mu_{s}\right\rangle d s
$$

Formally, μ_{t} solves the equation

$$
\frac{\partial}{\partial t} \mu_{t}=\frac{\alpha}{2} \Delta \mu_{t}+\nabla \cdot\left(\sqrt{\mu_{t}} \dot{W}_{t}\right)
$$

- Dean-Kawasaki equation for $\alpha=n$ and $V=0$

Dean-Kawasaki equation

For every $\varphi \in \mathrm{C}_{b}^{2}(\mathbb{R})$ the process $\mu_{t}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\sqrt{n} w_{i}(t)}$ satisfies

$$
\left\langle\varphi, \mu_{t}\right\rangle=\left\langle\varphi, \mu_{0}\right\rangle+\frac{n}{2} \int_{0}^{t}\left\langle\varphi^{\prime \prime}, \mu_{s}\right\rangle d s+M_{t}^{\varphi}
$$

where M^{φ} is a martingale with q.v.

$$
\left[M^{\varphi}\right]_{t}=\int_{0}^{t}\left\langle\left(\varphi^{\prime}\right)^{2}, \mu_{s}\right\rangle d s
$$

Formally, μ_{t} solves the equation

$$
\frac{\partial}{\partial t} \mu_{t}=\frac{\alpha}{2} \Delta \mu_{t}+\nabla \cdot\left(\mu_{t} \nabla \frac{\delta F\left(\mu_{t}\right)}{\delta \mu_{t}}\right)+\nabla \cdot\left(\sqrt{\mu_{t}} \dot{W}_{t}\right)
$$

- Dean-Kawasaki equation for $\alpha=n$ and $F(\mu)=\frac{1}{2} \int_{\mathbb{R}} \int_{\mathbb{R}} V(x-y) \mu(d x) \mu(d y)$ $\frac{\delta F(\mu)}{\delta \mu}(x)=\lim _{\varepsilon \rightarrow 0+} \frac{F\left(\mu+\varepsilon \delta_{x}\right)-F(\mu)}{\varepsilon}=\int_{\mathbb{R}} V(x-y) \mu(d y)$, if $V(x)=V(-x)$

Dean-Kawasaki equation

The Dean-Kawasaki equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \mu_{t}=\frac{\alpha}{2} \Delta \mu_{t}+\nabla \cdot\left(\mu_{t} \nabla \frac{\delta F\left(\mu_{t}\right)}{\delta \mu_{t}}\right)+\nabla \cdot\left(\sqrt{\mu_{t}} \dot{W}_{t}\right) \tag{F}
\end{equation*}
$$

The equation is used for modeling of behaviour of huge number of particles in the Langevin dynamics.
(K. Kawasaki '94; D. Dean '96; A. Donev, E. Vanden-Eijnden '14, '15;
B. Derrida '16; J. Zimmer '19; B. Gess '19)
F corresponds for the interaction between particles

Dean-Kawasaki equation

The Dean-Kawasaki equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \mu_{t}=\frac{\alpha}{2} \Delta \mu_{t}+\nabla \cdot\left(\mu_{t} \nabla \frac{\delta F\left(\mu_{t}\right)}{\delta \mu_{t}}\right)+\nabla \cdot\left(\sqrt{\mu_{t}} \dot{W}_{t}\right) \tag{F}
\end{equation*}
$$

The equation is used for modeling of behaviour of huge number of particles in the Langevin dynamics.
(K. Kawasaki '94; D. Dean '96; A. Donev, E. Vanden-Eijnden '14, '15;
B. Derrida '16; J. Zimmer '19; B. Gess '19)
F corresponds for the interaction between particles

Dean-Kawasaki equation

The Dean-Kawasaki equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \mu_{t}=\frac{\alpha}{2} \Delta \mu_{t}+\nabla \cdot\left(\mu_{t} \nabla \frac{\delta F\left(\mu_{t}\right)}{\delta \mu_{t}}\right)+\nabla \cdot\left(\sqrt{\mu_{t}} \dot{W}_{t}\right) \tag{F}
\end{equation*}
$$

Dean-Kawasaki equation

The Dean-Kawasaki equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \mu_{t}=\frac{\alpha}{2} \Delta \mu_{t}+\nabla \cdot\left(\mu_{t} \nabla \frac{\delta F\left(\mu_{t}\right)}{\delta \mu_{t}}\right)+\nabla \cdot\left(\sqrt{\mu_{t}} \dot{W}_{t}\right) \tag{F}
\end{equation*}
$$

A solution to the D-K equation for $\alpha=n, \mu_{0}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}^{0}}$:

$$
\mu_{t}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}(t)}
$$

where

1) $x_{i}(t)=x_{i}^{0}+\sqrt{n} w_{i}(t)$ if $F=0$;
2) $d x_{i}(t)=-\sum_{j=1}^{n} \nabla V\left(x_{i}(t)-x_{j}(t)\right) d t+\sqrt{n} d w_{i}(t)$

$$
\text { if } F(\mu)=\frac{1}{2} \int_{\mathbb{R}} \int_{\mathbb{R}} V(x-y) \mu(d x) \mu(d y) \text { and } V(x)=V(-x)
$$

Dean－Kawasaki equation

The Dean－Kawasaki equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \mu_{t}=\frac{\alpha}{2} \Delta \mu_{t}+\nabla \cdot\left(\mu_{t} \nabla \frac{\delta F\left(\mu_{t}\right)}{\delta \mu_{t}}\right)+\nabla \cdot\left(\sqrt{\mu_{t}} \dot{W}_{t}\right) \tag{F}
\end{equation*}
$$

The equation is used for modeling of behaviour of huge number of particles in the Langevin dynamics．
（K．Kawasaki＇94；D．Dean＇96；A．Donev，E．Vanden－Eijnden＇14，＇15；
B．Derrida＇16；J．Zimmer＇19；B．Gess＇19）
F corresponds for the interaction between particles

Does the D－K equation have solutions for every $\alpha>0$ ，any initial condition μ_{0} and interaction potential F ．

Definition of solution to the Dean-Kawasaki equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \mu_{t}=\frac{\alpha}{2} \Delta \mu_{t}+\nabla \cdot\left(\mu_{t} \nabla \frac{\delta F\left(\mu_{t}\right)}{\delta \mu_{t}}\right)+\nabla \cdot\left(\sqrt{\mu_{t}} \dot{W}_{t}\right) \tag{F}
\end{equation*}
$$

Definition of (martingale) solution

A continuous process $\mu_{t}, t \geq 0$ is a solution to ($\mathrm{DK}_{F}^{\alpha} \mathrm{eq}$) if, for every $\varphi \in C_{b}^{2}\left(\mathbb{R}^{d}\right)$
$\left\langle\varphi, \mu_{t}\right\rangle=\left\langle\varphi, \mu_{0}\right\rangle+\frac{\alpha}{2} \int_{0}^{t}\left\langle\Delta \varphi, \mu_{s}\right\rangle d s-\int_{0}^{t}\left\langle\nabla \varphi \cdot \nabla \frac{\delta F\left(\mu_{s}\right)}{\delta \mu_{s}}, \mu_{s}\right\rangle d s+M_{t}^{\varphi}$
where M^{φ} is a martingale with quadratic variation

$$
\left.\left.\int_{0}^{t}\langle | \nabla \varphi\right|^{2}, \mu_{s}\right\rangle d s
$$

Well－posedness of Dean－Kawasaki equation

Theorem

Let $\mu_{0}\left(\mathbb{R}^{d}\right)=1$ ，and F be smooth and bounded．Then the equation

$$
\frac{\partial}{\partial t} \mu_{t}=\frac{\alpha}{2} \Delta \mu_{t}+\nabla \cdot\left(\mu_{t} \nabla \frac{\delta F\left(\mu_{t}\right)}{\delta \mu_{t}}\right)+\nabla \cdot\left(\sqrt{\mu_{t}} \dot{W}_{t}\right)
$$

has a（unique）solution iff $\alpha=n$ and $\mu_{0}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}^{0}}$ ．Moreover，it is defined as above：

$$
\mu_{t}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}(t)}
$$

Elect．Comm．Probab＇19 for $F=0$ ；J．Stat．Phys．＇20 for F smooth

$$
\frac{\partial}{\partial t} \mu_{t}=\frac{\alpha}{2} \Delta \mu_{t}+\Gamma\left(\mu_{t}\right)+\nabla \cdot\left(\sqrt{\mu_{t}} \dot{W}_{t}\right)
$$

To have the equation which has no trivial solutions, a singular Γ is needed!

Singular interaction potential

$$
\frac{\partial}{\partial t} \mu_{t}=\frac{\alpha}{2} \Delta \mu_{t}+\Gamma\left(\mu_{t}\right)+\nabla \cdot\left(\sqrt{\mu_{t}} \dot{W}_{t}\right)
$$

To have the equation which has no trivial solutions, a singular Γ is needed!

There is known a singular Γ such that the $\mathrm{D}-\mathrm{K}$ equation has a solution μ_{t} which is the Wasserstein diffusion that is a Markov process with some invariant measure.
(von Renesse, Sturm '09)

Aim of my talk:

Singular interaction potential

$$
\frac{\partial}{\partial t} \mu_{t}=\frac{\alpha}{2} \Delta \mu_{t}+\Gamma\left(\mu_{t}\right)+\nabla \cdot\left(\sqrt{\mu_{t}} \dot{W}_{t}\right)
$$

To have the equation which has no trivial solutions, a singular Γ is needed!

There is known a singular Γ such that the $\mathrm{D}-\mathrm{K}$ equation has a solution μ_{t} which is the Wasserstein diffusion that is a Markov process with some invariant measure.
(von Renesse, Sturm '09)

Aim of my talk: We are going to use a particle approach in order to have another models which can solve the D-K equation (with another Γ).

Modified Massive Arratia Flow (on \mathbb{R})

Some observation

Let w_{1}, w_{2} be independent Brownian motions on \mathbb{R} with diffusion rates a_{1}, a_{2}

$$
\mu_{t}:=m_{1} \delta_{w_{1}(t)}+m_{2} \delta_{w_{2}(t)}
$$

By the Ito formula:

So, its quadratic variation is

Some observation

Let w_{1}, w_{2} be independent Brownian motions on \mathbb{R} with diffusion rates a_{1}, a_{2}

$$
\mu_{t}:=m_{1} \delta_{w_{1}(t)}+m_{2} \delta_{w_{2}(t)}
$$

By the Ito formula:

$$
\begin{aligned}
\left\langle\varphi, \mu_{t}\right\rangle & =m_{1} \varphi\left(w_{1}(t)\right)+m_{2} \varphi\left(w_{2}(t)\right) \\
& =\frac{1}{2} \text { bdd. variation }+\int_{0}^{t}\left[m_{1} \dot{\varphi}\left(w_{1}(s)\right) d w_{1}(s)+m_{2} \dot{\varphi}\left(w_{2}(s)\right) d w_{2}(s)\right]
\end{aligned}
$$

So, its quadratic variation is

$$
\int_{0}^{t}\left(m_{1}^{2} \dot{\varphi}\left(w_{1}(s)\right)^{2} a_{1}+m_{2}^{2} \dot{\varphi}\left(w_{2}(s)\right)^{2} a_{2}\right) d s
$$

Some observation

Let w_{1}, w_{2} be independent Brownian motions on \mathbb{R} with diffusion rates a_{1}, a_{2}

$$
\mu_{t}:=m_{1} \delta_{w_{1}(t)}+m_{2} \delta_{w_{2}(t)}
$$

By the Ito formula:

$$
\begin{aligned}
\left\langle\varphi, \mu_{t}\right\rangle & =m_{1} \varphi\left(w_{1}(t)\right)+m_{2} \varphi\left(w_{2}(t)\right) \\
& =\frac{1}{2} \text { bdd. variation }+\int_{0}^{t}\left[m_{1} \dot{\varphi}\left(w_{1}(s)\right) d w_{1}(s)+m_{2} \dot{\varphi}\left(w_{2}(s)\right) d w_{2}(s)\right]
\end{aligned}
$$

So, its quadratic variation is

$$
\int_{0}^{t}\left(m_{1}^{2} \dot{\varphi}\left(w_{1}(s)\right)^{2} a_{1}+m_{2}^{2} \dot{\varphi}\left(w_{2}(s)\right)^{2} a_{2}\right) d s=\int_{0}^{t}\left\langle\dot{\varphi}^{2}, \mu_{s}\right\rangle d s
$$

if $a_{1}=\frac{1}{m_{1}}$ and $a_{2}=\frac{1}{m_{2}}$.
proportional to its mass!

Some observation

Let w_{1}, w_{2} be independent Brownian motions on \mathbb{R} with diffusion rates a_{1}, a_{2}

$$
\mu_{t}:=m_{1} \delta_{w_{1}(t)}+m_{2} \delta_{w_{2}(t)}
$$

By the Ito formula:

$$
\begin{aligned}
\left\langle\varphi, \mu_{t}\right\rangle & =m_{1} \varphi\left(w_{1}(t)\right)+m_{2} \varphi\left(w_{2}(t)\right) \\
& =\frac{1}{2} \text { bdd. variation }+\int_{0}^{t}\left[m_{1} \dot{\varphi}\left(w_{1}(s)\right) d w_{1}(s)+m_{2} \dot{\varphi}\left(w_{2}(s)\right) d w_{2}(s)\right]
\end{aligned}
$$

So, its quadratic variation is

$$
\int_{0}^{t}\left(m_{1}^{2} \dot{\varphi}\left(w_{1}(s)\right)^{2} a_{1}+m_{2}^{2} \dot{\varphi}\left(w_{2}(s)\right)^{2} a_{2}\right) d s=\int_{0}^{t}\left\langle\dot{\varphi}^{2}, \mu_{s}\right\rangle d s
$$

if $a_{1}=\frac{1}{m_{1}}$ and $a_{2}=\frac{1}{m_{2}}$.
The diffusion rate of each particle has to be inversely proportional to its mass!

n-particle system

Consider n particle system on \mathbb{R} such that

- particles start from points $\frac{i}{n}, i=1, \ldots, n$ with masses $\frac{1}{n}$ and move as Brownian motions;
- diffusion rate of each particle inversely depends on its mass;
- particles move independently of each other and coalesce after meeting.

n－particle system as a family of martingales

Let $x_{i}(t)$ be the position of particle at time t starting from $\frac{i}{n}, i=1, \ldots, n$ then
（1）x_{i} is a continuous square integrable martingale for all i ．
（2）$x_{i}(0)=\frac{i}{n}$ ；
（3）$x_{i}(t) \leq x_{j}(t), i<j, t \geq 0$ ；
（4）$\left[x_{i}\right]_{t}=\int_{0}^{t} \frac{d s}{m_{i}(s)}$ ，
where $m_{i}(t)=\frac{1}{n}\left|\left\{j: x_{i}(t)=x_{j}(t)\right\}\right| ;$
（5）$\left[x_{i}, x_{j}\right]_{t}=0, t<\tau_{i, j}$ ，
where $\tau_{i, j}=\inf \left\{t: x_{i}(t)=x_{j}(t)\right\}$ ．

Infinite particle system

Set

$$
X_{n}(u, t)=\sum_{i=1}^{n} x_{i}^{n}(t) \mathbb{I}_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(u), \quad u \in[0,1], \quad t \geq 0
$$

Theorem

There exists a subsequence $X_{n_{k}}, k \geq 1$ ，which converges to a process X which satisfies the following properties
（9）$V(\varkappa$,$) is continuous matringale for all u$ ；

Infinite particle system

Set

$$
X_{n}(u, t)=\sum_{i=1}^{n} x_{i}^{n}(t) \mathbb{I}_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(u), \quad u \in[0,1], \quad t \geq 0
$$

Theorem

There exists a subsequence $X_{n_{k}}, k \geq 1$, which converges to a process X which satisfies the following properties
(1) $X(u, \cdot)$ is continuous matringale for all u;
(2) $X(u, 0)=u, u \in[0,1]$;
(3) $X(u, t) \leq X(v, t), \quad u<v$;
(4) $[X(u, \cdot)]_{t}=\int_{0}^{t} \frac{d s}{m(u, s)}$,
where $m(u, t)=\operatorname{Leb}\{v: X(u, t)=X(v, t)\}$;
(5) $[X(u, \cdot), X(v, \cdot)]_{t}=0, t<\tau_{u, v}$,
where $\tau_{u, v}=\inf \{t: X(u, t)=X(v, t)\}$.

（1）$X(u, \cdot)$ is continuous matringale for all u ；
（2）$X(u, 0)=u, u \in[0,1]$ ；
（3）$X(u, t) \leq X(v, t), \quad u<v$ ；
（4）$[X(u, \cdot)]_{t}=\int_{0}^{t} \frac{d s}{m(u, s)}$ ，
where $m(u, t)=\operatorname{Leb}\{v: X(u, t)=X(v, t)\}$ ；
（5）$[X(u, \cdot), X(v, \cdot)]_{t}=0, t<\tau_{u, v}$ ，
where $\tau_{u, v}=\inf \{t: X(u, t)=X(v, t)\}$ ．

Infinite particle system

Set

$$
X_{n}(u, t)=\sum_{i=1}^{n} x_{i}^{n}(t) \mathbb{I}_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(u), \quad u \in[0,1], \quad t \geq 0
$$

Theorem

There exists a subsequence $X_{n_{k}}, k \geq 1$, which converges to a process X which satisfies the following properties
(1) $X(u, \cdot)$ is continuous matringale for all u;
(2) $X(u, 0)=u, u \in[0,1]$;
(3) $X(u, t) \leq X(v, t), \quad u<v$;
(4) $[X(u, \cdot)]_{t}=\int_{0}^{t} \frac{d s}{m(u, s)}$,
where $m(u, t)=\operatorname{Leb}\{v: X(u, t)=X(v, t)\}$;
(5) $[X(u, \cdot), X(v, \cdot)]_{t}=0, t<\tau_{u, v}$,
where $\tau_{u, v}=\inf \{t: X(u, t)=X(v, t)\}$.
Open problems:
(1) Does the sequence $X_{n}, n \geq 1$, converges to X ?
(2) Does Conditions $1 .-5$. uniquely determine the distribution of X ?

Some basic properties of modified massive Arratia flow

Let $T>0$.
(1) Let $N(t)$ be a number of distinct particles at time t. Then

$$
\mathbb{E} \frac{1}{m(u, t)} \leq \frac{C}{\sqrt[3]{t}}, \quad u \in[0,1], \quad t \in[0, T]
$$

and hence

$$
\mathbb{E} N(t)=\mathbb{E} \int_{0}^{1} \frac{d u}{m(u, t)} \leq \frac{C}{\sqrt[3]{t}}, \quad t \in[0, T] ;
$$

(2) The process $X(\cdot, t), t \geq 0$, takes values in

$$
L_{2}^{\uparrow}=\left\{g \in L_{2}[0,1]: g \text { is non-decreasing }\right\}
$$

and is continuous.

Some basic properties of modified massive Arratia flow

Let $T>0$.
(1) Let $N(t)$ be a number of distinct particles at time t. Then

$$
\mathbb{E} \frac{1}{m(u, t)} \leq \frac{C}{\sqrt[3]{t}}, \quad u \in[0,1], \quad t \in[0, T]
$$

and hence

$$
\mathbb{E} N(t)=\mathbb{E} \int_{0}^{1} \frac{d u}{m(u, t)} \leq \frac{C}{\sqrt[3]{t}}, \quad t \in[0, T] ;
$$

(2) The process $X(\cdot, t), t \geq 0$, takes values in

$$
L_{2}^{\uparrow}=\left\{g \in L_{2}[0,1]: g \text { is non-decreasing }\right\}
$$

and is continuous.

LDP for modified massive Arratia flow

Let $w(t), t \in[0, T]$ ，be a Brownian motion in \mathbb{R}^{d} starting at x_{0} and $w_{\varepsilon}(t)=w(\varepsilon t)$ ．Then $\left\{w_{\varepsilon}\right\}_{\varepsilon>0}$ satisfies the LDP in $\mathrm{C}\left([0, T], \mathbb{R}^{d}\right)$ with the rate function

$$
I(\varphi)= \begin{cases}\frac{1}{2} \int_{0}^{T}\|\dot{\varphi}(t)\|_{\mathbb{R}^{d}}^{2} d t, & \varphi \in H_{x^{0}}^{2}\left([0, T], \mathbb{R}^{d}\right), \\ +\infty, & \text { otherwise }\end{cases}
$$

Roughly speaking

$$
\mathbb{P}\left\{w_{\varepsilon} \in B_{r}(\psi)\right\} \sim e^{-\frac{1}{\varepsilon} \inf _{B_{r}(\psi)} I}, \quad \varepsilon \rightarrow 0+
$$

in $\mathrm{C}\left([0, T], L_{2}^{\uparrow}\right)$ with rate function

LDP for modified massive Arratia flow

Let $w(t), t \in[0, T]$, be a Brownian motion in \mathbb{R}^{d} starting at x_{0} and $w_{\varepsilon}(t)=w(\varepsilon t)$. Then $\left\{w_{\varepsilon}\right\}_{\varepsilon>0}$ satisfies the LDP in $\mathrm{C}\left([0, T], \mathbb{R}^{d}\right)$ with the rate function

$$
I(\varphi)= \begin{cases}\frac{1}{2} \int_{0}^{T}\|\dot{\varphi}(t)\|_{\mathbb{R}^{d}}^{2} d t, & \varphi \in H_{x^{0}}^{2}\left([0, T], \mathbb{R}^{d}\right) \\ +\infty, & \text { otherwise }\end{cases}
$$

Roughly speaking

$$
\mathbb{P}\left\{w_{\varepsilon} \in B_{r}(\psi)\right\} \sim e^{-\frac{1}{\varepsilon} \inf _{B_{r}(\psi)} I}, \quad \varepsilon \rightarrow 0+
$$

Theorem

The family $X_{\varepsilon}=\{X(u, \varepsilon t), u \in[0,1], t \in[0, T]\}, \varepsilon>0$, satisfies the LDP in $\mathrm{C}\left([0, T], L_{2}^{\uparrow}\right)$ with rate function

$$
I(\varphi)= \begin{cases}\frac{1}{2} \int_{0}^{T}\|\dot{\varphi}(t)\|_{L_{2}}^{2} d t, & \varphi \in H_{\mathrm{id}}^{2}\left([0, T], L_{2}^{\uparrow}\right), \\ +\infty, & \text { otherwise }\end{cases}
$$

$H_{2}\left([0, T], L_{2}^{\uparrow}\right)=\left\{\varphi \in \mathrm{C}\left([0, T], L_{2}^{\uparrow}\right): \varphi(t)=\mathrm{id}+\int_{0}^{t} \dot{\varphi}(t) d t, \quad \int_{0}^{T}\|\dot{\varphi}\|_{L_{2}}^{2} d t<+\infty\right\}$

A consequence from LDP

Let $w(t), t \in[0, T]$, be a standard Brownian motion in \mathbb{R}^{d} starting at x_{0}. Let $T=1$. Then $w_{\varepsilon}(1)=w(\varepsilon)$ satisfies the LDP in \mathbb{R}^{d} :

$$
\mathbb{P}\left\{w(\varepsilon) \in B_{r}(y)\right\} \sim e^{-\frac{1}{\varepsilon} \inf _{x \in B_{r}(y)} \frac{\left\|x_{0}-x\right\|_{\mathbb{R} d}^{2}}{2}}, \quad \varepsilon \rightarrow 0+.
$$

Varadhan formula (Varadhan, CPAM '87): If $w(t), t \geq 0$, is a Brownian motion of a Riemannian manifold, then

where d is the geodesic distance.

The family $X(\cdot, \varepsilon), \varepsilon>0$, satisfies the LDP in L_{2}^{\uparrow}

A consequence from LDP

Let $w(t), t \in[0, T]$, be a standard Brownian motion in \mathbb{R}^{d} starting at x_{0}. Let $T=1$. Then $w_{\varepsilon}(1)=w(\varepsilon)$ satisfies the LDP in \mathbb{R}^{d} :

$$
\mathbb{P}\left\{w(\varepsilon) \in B_{r}(y)\right\} \sim e^{-\frac{1}{\varepsilon} \inf _{x \in B_{r}(y)} \frac{\left\|x_{0}-x\right\|_{\mathbb{R} d}}{2}}, \quad \varepsilon \rightarrow 0+
$$

Varadhan formula (Varadhan, CPAM '87):
If $w(t), t \geq 0$, is a Brownian motion of a Riemannian manifold, then

$$
\mathbb{P}\left\{w(\varepsilon) \in B_{r}(y)\right\} \sim e^{-\frac{1}{\varepsilon}} \inf _{x \in B_{r}(y)} \frac{d\left(x_{0}, x\right)^{2}}{2}, \quad \varepsilon \rightarrow 0+.
$$

where d is the geodesic distance.

A consequence from LDP

Let $w(t), t \in[0, T]$, be a standard Brownian motion in \mathbb{R}^{d} starting at x_{0}. Let $T=1$. Then $w_{\varepsilon}(1)=w(\varepsilon)$ satisfies the LDP in \mathbb{R}^{d} :

$$
\mathbb{P}\left\{w(\varepsilon) \in B_{r}(y)\right\} \sim e^{-\frac{1}{\varepsilon} \inf _{x \in B_{r}(y)} \frac{\left\|x_{0}-x\right\|_{\mathbb{R} d}^{2}}{2}}, \quad \varepsilon \rightarrow 0+.
$$

Varadhan formula (Varadhan, CPAM '87):
If $w(t), t \geq 0$, is a Brownian motion of a Riemannian manifold, then

$$
\mathbb{P}\left\{w(\varepsilon) \in B_{r}(y)\right\} \sim e^{-\frac{1}{\varepsilon}} \inf _{x \in B_{r}(y)} \frac{d\left(x_{0}, x\right)^{2}}{2}, \quad \varepsilon \rightarrow 0+.
$$

where d is the geodesic distance.

Corollary

The family $X(\cdot, \varepsilon), \varepsilon>0$, satisfies the LDP in L_{2}^{\uparrow} :

$$
\mathbb{P}\left\{X(\cdot, \varepsilon) \in B_{r}(f)\right\} \sim e^{-\frac{1}{\varepsilon} \operatorname{iinf}_{x \in B_{r}(f)} \frac{\| \text { id }-g \|_{L_{2}}^{2}}{2}}, \quad \varepsilon \rightarrow 0+
$$

Dean-Kawasaki equation and modified massive Arratia flow

We consider the evolution of particle mass in the modified massive Arratia flow:

$$
\mu_{t}=X(\cdot, t)_{\#} \operatorname{Leb}_{1}, \quad t \geq 0,
$$

where Leb $_{1}=$ Leb $\left.\right|_{[0,1]}$.

Theorem

(1) The process $\mu_{t}, t \geq 0$, solves the equation

$$
d \mu_{t}=\frac{1}{2} \Delta \mu_{t}^{*} d t+\operatorname{div}\left(\sqrt{\mu_{t}} d W_{t}\right)
$$

where $\mu_{t}^{*}=\sum_{x \in \operatorname{supp} \mu_{t}} \delta_{x}$.
(2) The Varadhan formula:

$$
\mathbb{P}\left\{\mu_{\varepsilon} \in B_{r}(\nu)\right\} \sim e^{-\frac{1}{\varepsilon}} \inf _{\rho \in B_{r}(\nu)} \frac{d_{\nu}^{2}\left(\operatorname{Leb}_{1}, \rho\right)}{2}, \quad \varepsilon \rightarrow 0+
$$

where $d_{\mathcal{W}}$ denotes the Wasserstein distance on the space of probability measures $\mathcal{P}_{2}(\mathbb{R})$ on \mathbb{R} with finite second moment.

References

V．Konarovskyi，T．Lehmann and M．von Renesse．
Dean－Kawasaki dynamics：III－posedness vs．Triviality Elect．Comm．Probab，Vol． 24 （2019），no．8， 9 pp．

目 V．Konarovskyi，T．Lehmann and M．von Renesse．
On Dean－Kawasaki Dynamics with Smooth Drift Potential J．Stat．Phys．，Vol． 178 （2020），no．3，666－681．

V．Konarovskyi．
A system of coalescing heavy diffusion particles on the real line Ann．Probab，Vol． 45 （2017），no．5，3293－3335．
宣
V．Konarovskyi and M．von Renesse．
Modified massive Arratia flow and Wasserstein diffusion Comm．Pure Appl．Math．，Vol． 72 （2019），no．4，764－800．

Thank you！

