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Dean-Kawasaki Equation



Systems of interacting particles in random environment

Consider a system of SDEs in Rd

dxi(t) = −
n∑
j=1

∇V (xi(t)− xj(t))dt+
√
ndwi(t)

xi(0) = x0i , i = 1, . . . , n,

where wi are independent Brownian motions and V is an interaction potential

This system of equation is not convenient for description of a large particle system
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Evolution of particle mass

Let V = 0 (no interaction) and d = 1. Take

µt :=

n∑
i=1

1

n
δxi(t) =

1

n

n∑
i=1

δ√nwk(t), t ≥ 0.

Use Ito’s formula to 〈ϕ, µt〉 =
∫
R
ϕdµt = 1

n

∑n
i=1 ϕ(xi(t)):

d 〈ϕ, µt〉 =
1

2n

n∑
i=1

ϕ′′(xi(t))ndt+
1

n

n∑
i=1

ϕ′(xi(t))dxi(t)

=
n

2
〈ϕ′′, µt〉dt+ dMϕ

t

where Mϕ
t is a martingale with q.v.

[Mϕ]t =
n

n2

∫ t

0

n∑
i=1

ϕ′(xi(s))
2dt =

∫ t

0

〈
(ϕ′)2, µs

〉
ds



Evolution of particle mass

Let V = 0 (no interaction) and d = 1. Take

µt :=

n∑
i=1

1

n
δxi(t) =

1

n

n∑
i=1

δ√nwk(t), t ≥ 0.

Use Ito’s formula to 〈ϕ, µt〉 =
∫
R
ϕdµt = 1

n

∑n
i=1 ϕ(xi(t)):

d 〈ϕ, µt〉 =
1

2n

n∑
i=1

ϕ′′(xi(t))ndt+
1

n

n∑
i=1

ϕ′(xi(t))dxi(t)

=
n

2
〈ϕ′′, µt〉dt+ dMϕ

t

where Mϕ
t is a martingale with q.v.

[Mϕ]t =
n

n2

∫ t

0

n∑
i=1

ϕ′(xi(s))
2dt =

∫ t

0

〈
(ϕ′)2, µs

〉
ds



Evolution of particle mass

Let V = 0 (no interaction) and d = 1. Take

µt :=

n∑
i=1

1

n
δxi(t) =

1

n

n∑
i=1

δ√nwk(t), t ≥ 0.

Use Ito’s formula to 〈ϕ, µt〉 =
∫
R
ϕdµt = 1

n

∑n
i=1 ϕ(xi(t)):

d 〈ϕ, µt〉 =
n

2

1

n

n∑
i=1

ϕ′′(xi(t))dt+
1

n

n∑
i=1

ϕ′(xi(t))dxi(t)

=
n

2
〈ϕ′′, µt〉dt+ dMϕ

t

where Mϕ
t is a martingale with q.v.

[Mϕ]t =
n

n2

∫ t

0

n∑
i=1

ϕ′(xi(s))
2dt =

∫ t

0

〈
(ϕ′)2, µs

〉
ds



Evolution of particle mass

Let V = 0 (no interaction) and d = 1. Take

µt :=

n∑
i=1

1

n
δxi(t) =

1

n

n∑
i=1

δ√nwk(t), t ≥ 0.

Use Ito’s formula to 〈ϕ, µt〉 =
∫
R
ϕdµt = 1

n

∑n
i=1 ϕ(xi(t)):

d 〈ϕ, µt〉 =
n

2

1

n

n∑
i=1

ϕ′′(xi(t))dt+
1

n

n∑
i=1

ϕ′(xi(t))dxi(t)

=
n

2
〈ϕ′′, µt〉dt+ dMϕ

t

where Mϕ
t is a martingale with q.v.

[Mϕ]t =
n

n2

∫ t

0

n∑
i=1

ϕ′(xi(s))
2dt =

∫ t

0

〈
(ϕ′)2, µs

〉
ds



Dean-Kawasaki equation

For every ϕ ∈ C2
b(R) the process µt = 1

n

∑n
i=1 δ

√
nwi(t) satisfies

〈ϕ, µt〉 = 〈ϕ, µ0〉+
n

2

∫ t

0

〈ϕ′′, µs〉ds+Mϕ
t

where Mϕ is a martingale with q.v.

[Mϕ]t =

∫ t

0

〈(ϕ′)2, µs〉ds.

Formally, µt solves the equation

∂

∂t
µt =

α

2
∆µt +∇ ·

(√
µtẆt

)
- Dean-Kawasaki equation for α = n and V = 0
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µtẆt

)
- Dean-Kawasaki equation for α = n and V = 0



Dean-Kawasaki equation

For every ϕ ∈ C2
b(R) the process µt = 1

n

∑n
i=1 δ

√
nwi(t) satisfies

〈ϕ, µt〉 = 〈ϕ, µ0〉+
n

2

∫ t

0

〈ϕ′′, µs〉ds+Mϕ
t

where Mϕ is a martingale with q.v.

[Mϕ]t =

∫ t

0

〈(ϕ′)2, µs〉ds.

Formally, µt solves the equation

∂

∂t
µt =

α

2
∆µt +∇ ·

(
µt∇

δF (µt)

δµt

)
+∇ ·

(√
µtẆt
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2

∫
R
∫
R V (x− y)µ(dx)µ(dy)

δF (µ)
δµ (x) = limε→0+

F (µ+εδx)−F (µ)
ε =

∫
R V (x− y)µ(dy), if V (x) = V (−x)



Dean-Kawasaki equation

The Dean-Kawasaki equation

∂

∂t
µt =

α

2
∆µt +∇ ·

(
µt∇

δF (µt)

δµt

)
+∇ ·

(√
µtẆt

)
(DKαF eq)

The equation is used for modeling of behaviour of huge number of particles in the
Langevin dynamics.

(K. Kawasaki ’94; D. Dean ’96; A. Donev, E. Vanden-Eijnden ’14, ’15;

B. Derrida ’16; J. Zimmer ’19; B. Gess ’19)

F corresponds for the interaction between particles

Does the D-K equation have solutions for every α > 0, any initial condition µ0

and interaction potential F .
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i
:
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1

n

n∑
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where

1) xi(t) = x0i +
√
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Definition of solution to the Dean-Kawasaki equation

∂

∂t
µt =

α

2
∆µt +∇ ·

(
µt∇

δF (µt)

δµt

)
+∇ ·

(√
µtẆt

)
(DKαF eq)

Definition of (martingale) solution

A continuous process µt, t ≥ 0 is a solution to (DKαF eq) if, for every
ϕ ∈ C2

b(Rd)

〈ϕ, µt〉 = 〈ϕ, µ0〉+
α

2

∫ t

0

〈∆ϕ, µs〉ds−
∫ t

0

〈
∇ϕ · ∇δF (µs)

δµs
, µs

〉
ds+Mϕ

t

where Mϕ is a martingale with quadratic variation∫ t

0

〈|∇ϕ|2, µs〉ds.



Well-posedness of Dean-Kawasaki equation

Theorem (K., T. Lehmann, M. von Renesse)

Let µ0(Rd) = 1, and F be smooth and bounded. Then the equation

∂

∂t
µt =

α

2
∆µt +∇ ·

(
µt∇

δF (µt)

δµt

)
+∇ ·

(√
µtẆt

)
has a (unique) solution iff α = n and µ0 = 1

n

∑n
i=1 δx0

i
. Moreover, it is

defined as above:

µt =
1

n

n∑
i=1

δxi(t).

Elect. Comm. Probab ’19 for F = 0; J. Stat. Phys. ’20 for F smooth



Singular interaction potential

∂

∂t
µt =

α

2
∆µt + Γ(µt) +∇ ·

(√
µtẆt

)

To have the equation which has no trivial solutions,
a singular Γ is needed!

There is known a singular Γ such that the D-K equation has a solution µt which is
the Wasserstein diffusion that is a Markov process with some invariant measure.
(von Renesse, Sturm ’09)

Aim of my talk: We are going to use a particle approach in order to have
another models which can solve the D-K equation (with another Γ).
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µtẆt

)

To have the equation which has no trivial solutions,
a singular Γ is needed!

There is known a singular Γ such that the D-K equation has a solution µt which is
the Wasserstein diffusion that is a Markov process with some invariant measure.
(von Renesse, Sturm ’09)

Aim of my talk: We are going to use a particle approach in order to have
another models which can solve the D-K equation (with another Γ).



Modified Massive Arratia Flow (on R)



Some observation

Let w1, w2 be independent Brownian motions on R with diffusion rates a1, a2

µt := m1δw1(t) +m2δw2(t)

By the Ito formula:

〈ϕ, µt〉 =m1ϕ(w1(t)) +m2ϕ(w2(t))

=
1

2
bdd. variation +

∫ t

0

[m1ϕ̇(w1(s))dw1(s) +m2ϕ̇(w2(s))dw2(s)]

So, its quadratic variation is∫ t

0

(
m2

1ϕ̇(w1(s))2a1 +m2
2ϕ̇(w2(s))2a2

)
ds =

∫ t

0

〈ϕ̇2, µs〉ds,

if a1 = 1
m1

and a2 = 1
m2

.

The diffusion rate of each particle has to be inversely
proportional to its mass!
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n-particle system

Consider n particle system on R such that

particles start from points i
n , i = 1, . . . , n with masses 1

n and move as
Brownian motions;

diffusion rate of each particle inversely depends on its mass;

particles move independently of each other and coalesce after meeting.



n-particle system as a family of martingales

Let xi(t) be the position of particle at time t starting from i
n , i = 1, . . . , n then

1 xi is a continuous square integrable martingale for all i.
2 xi(0) = i

n ;
3 xi(t) ≤ xj(t), i < j, t ≥ 0;

4 [xi]t =
∫ t
0

ds
mi(s)

,

where mi(t) = 1
n |{j : xi(t) = xj(t)}|;

5 [xi, xj ]t = 0, t < τi,j ,
where τi,j = inf{t : xi(t) = xj(t)}.



Infinite particle system

Set

Xn(u, t) =

n∑
i=1

xni (t)I[ i−1
n , in ](u), u ∈ [0, 1], t ≥ 0;

Theorem (K., Ann. Probab. ’17)

There exists a subsequence Xnk , k ≥ 1, which converges to a process X which
satisfies the following properties

1 X(u, ·) is continuous matringale for all u;

2 X(u, 0) = u, u ∈ [0, 1];

3 X(u, t) ≤ X(v, t), u < v;

4 [X(u, ·)]t =
∫ t

0
ds

m(u,s)
,

where m(u, t) = Leb{v : X(u, t) = X(v, t)};
5 [X(u, ·), X(v, ·)]t = 0, t < τu,v,

where τu,v = inf {t : X(u, t) = X(v, t)}.
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1 X(u, ·) is continuous matringale for all u;
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0
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5 [X(u, ·), X(v, ·)]t = 0, t < τu,v,

where τu,v = inf {t : X(u, t) = X(v, t)}.

Open problems:
1 Does the sequence Xn, n ≥ 1, converges to X?
2 Does Conditions 1.-5. uniquely determine the distribution of X?



Some basic properties of modified massive Arratia flow

Let T > 0.

1 Let N(t) be a number of distinct particles at time t. Then

E
1

m(u, t)
≤ C

3
√
t
, u ∈ [0, 1], t ∈ [0, T ]

and hence

EN(t) = E
∫ 1

0

du

m(u, t)
≤ C

3
√
t
, t ∈ [0, T ];

2 The process X(·, t), t ≥ 0, takes values in

L↑2 = {g ∈ L2[0, 1] : g is non-decreasing}

and is continuous.



Some basic properties of modified massive Arratia flow

Let T > 0.

1 Let N(t) be a number of distinct particles at time t. Then

E
1

m(u, t)
≤ C

3
√
t
, u ∈ [0, 1], t ∈ [0, T ]

and hence

EN(t) = E
∫ 1

0

du

m(u, t)
≤ C

3
√
t
, t ∈ [0, T ];

2 The process X(·, t), t ≥ 0, takes values in

L↑2 = {g ∈ L2[0, 1] : g is non-decreasing}

and is continuous.



LDP for modified massive Arratia flow

Let w(t), t ∈ [0, T ], be a Brownian motion in Rd starting at x0 and
wε(t) = w(εt). Then {wε}ε>0 satisfies the LDP in C([0, T ],Rd) with the rate
function

I(ϕ) =

{
1
2

∫ T
0
‖ϕ̇(t)‖2Rddt, ϕ ∈ H2

x0([0, T ],Rd),
+∞, otherwise.

Roughly speaking

P {wε ∈ Br(ψ)} ∼ e
− 1
ε inf
Br(ψ)

I
, ε→ 0 + .

Theorem (K., M. von Renesse, Comm. Pure Appl. Math. ’19)

The family Xε = {X(u, εt), u ∈ [0, 1], t ∈ [0, T ]}, ε > 0, satisfies the LDP

in C([0, T ], L↑2) with rate function

I(ϕ) =

{
1
2

∫ T
0
‖ϕ̇(t)‖2L2

dt, ϕ ∈ H2
id([0, T ], L↑2),

+∞, otherwise.

H2([0, T ], L↑
2) =

{
ϕ ∈ C([0, T ], L↑

2) : ϕ(t) = id +
∫ t
0 ϕ̇(t)dt,

∫ T
0 ‖ϕ̇‖2L2

dt < +∞
}
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function

I(ϕ) =

{
1
2

∫ T
0
‖ϕ̇(t)‖2Rddt, ϕ ∈ H2

x0([0, T ],Rd),
+∞, otherwise.

Roughly speaking

P {wε ∈ Br(ψ)} ∼ e
− 1
ε inf
Br(ψ)

I
, ε→ 0 + .

Theorem (K., M. von Renesse, Comm. Pure Appl. Math. ’19)

The family Xε = {X(u, εt), u ∈ [0, 1], t ∈ [0, T ]}, ε > 0, satisfies the LDP

in C([0, T ], L↑2) with rate function

I(ϕ) =

{
1
2

∫ T
0
‖ϕ̇(t)‖2L2

dt, ϕ ∈ H2
id([0, T ], L↑2),

+∞, otherwise.

H2([0, T ], L↑
2) =

{
ϕ ∈ C([0, T ], L↑

2) : ϕ(t) = id +
∫ t
0 ϕ̇(t)dt,

∫ T
0 ‖ϕ̇‖2L2

dt < +∞
}



A consequence from LDP
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Let T = 1. Then wε(1) = w(ε) satisfies the LDP in Rd:

P {w(ε) ∈ Br(y)} ∼ e
− 1
ε inf
x∈Br(y)

‖x0−x‖
2
Rd

2
, ε→ 0 + .

Varadhan formula (Varadhan, CPAM ’87):
If w(t), t ≥ 0, is a Brownian motion of a Riemannian manifold, then

P {w(ε) ∈ Br(y)} ∼ e
− 1
ε inf
x∈Br(y)

d(x0,x)
2

2
, ε→ 0 + .

where d is the geodesic distance.

Corollary

The family X(·, ε), ε > 0, satisfies the LDP in L↑2:

P {X(·, ε) ∈ Br(f)} ∼ e
− 1
ε inf
x∈Br(f)

‖id−g‖2L2
2

, ε→ 0 + .
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Dean-Kawasaki equation and modified massive Arratia flow

We consider the evolution of particle mass in the modified massive Arratia flow:

µt = X(·, t)# Leb1, t ≥ 0,

where Leb1 = Leb |[0,1].

Theorem (K., M. von Renesse, Comm. Pure Appl. Math. ’19)

1 The process µt, t ≥ 0, solves the equation

dµt =
1

2
∆µ∗t dt+ div(

√
µtdWt),

where µ∗t =
∑
x∈suppµt δx.

2 The Varadhan formula:

P{µε ∈ Br(ν)} ∼ e
− 1
ε inf
ρ∈Br(ν)

d2W (Leb1,ρ)

2
, ε→ 0+

where dW denotes the Wasserstein distance on the space of
probability measures P2(R) on R with finite second moment.



References

V. Konarovskyi, T. Lehmann and M. von Renesse.

Dean-Kawasaki dynamics: Ill-posedness vs. Triviality

Elect. Comm. Probab, Vol. 24 (2019), no. 8, 9 pp.

V. Konarovskyi, T. Lehmann and M. von Renesse.

On Dean-Kawasaki Dynamics with Smooth Drift Potential

J. Stat. Phys., Vol. 178 (2020), no. 3, 666-681.

V. Konarovskyi.

A system of coalescing heavy diffusion particles on the real line

Ann. Probab, Vol. 45 (2017), no. 5, 3293-3335.

V. Konarovskyi and M. von Renesse.

Modified massive Arratia flow and Wasserstein diffusion

Comm. Pure Appl. Math., Vol. 72 (2019), no. 4, 764-800.

Thank you!


