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Dean-Kawasaki Equation



Systems of interacting particles in random environment

Consider a system of SDEs in R?

da;(t) = — Z VV (x4(t) — x;(t))dt + /ndw;(t)
2;(0) = ¥

7

1=1,...,n,

where w; are independent Brownian motions and V' is an interaction potential



Systems of interacting particles in random environment

Consider a system of SDEs in R?
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2;(0) = ¥
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dwi(t) = = D YV (@i(t) = 25(t))dt + /nduwi(?)
1=1,...,n,

where w; are independent Brownian motions and V' is an interaction potential

This system of equation is not convenient for description of a large particle system
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Evolution of particle mass

Let V' =0 (no interaction) and d = 1. Take
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Evolution of particle mass

Let V' =0 (no interaction) and d = 1. Take
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t>0.
Use Ito's formula to (¢, p;) = [, wdps =

5 2im pl@i(t)):
d 907.UJt

Zw 2t + - 3 a0 da (1)
=g<<p

, p)dt + dMF
where M,” is a martingale with q.v
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Dean-Kawasaki equation

For every € C7(R) the process ju; = L 37" | 0/, (+) Satisfies

<Q07/1Jt> = <(,07,UJ0> + E

t
D) / <S0Naﬂs>d5 + sz
0
where M¥ is a martingale with q.v.

M], = / ()2, pa)ds.
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For every € C7(R) the process ju; = L 37" | 0/, (+) Satisfies
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Formally, y; solves the equation
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Dean-Kawasaki equation

For every € C7(R) the process i, = L 37" | O Jmw, (1) satisfies

<Q07/1Jt> = <<)07,UJ0> + E

t
9 / <S0Naﬂs>d5 + sz
0
where M¥ is a martingale with q.v.

(M¥], = / ()2, s}

Formally, y; solves the equation
o) o OF (pe) ;
St =S A+ V- (V) 4 v (i)
gttt = 9o + ('uL O iy + pet
SF (1)
op

- Dean-Kawasaki equation for « =n and F(u) =% [, [ V(2 —y)u(dz)pu(dy)
() = lim. 4 F(“JFE(S;)*F(“) = [ V(e —y)uldy), if V(z)=V(-a
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Dean-Kawasaki equation

The Dean-Kawasaki equation

0 . (% 5F(/Lt) I «

The equation is used for modeling of behaviour of huge number of particles in the
Langevin dynamics.

(K. Kawasaki '94; D. Dean '96; A. Donev, E. Vanden-Eijnden '14, '15;
B. Derrida '16; J. Zimmer '19; B. Gess '19)
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The Dean-Kawasaki equation
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Langevin dynamics.
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Dean-Kawasaki equation

The Dean-Kawasaki equation
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where
1) z;(t) = 29 + /nw;(t) if F = 0;




Dean-Kawasaki equation

The Dean-Kawasaki equation

9 OF () i
gt = A#t"'v‘ <ﬂtv5—ut +V- (\//TtWt)

(DKE eq)
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i=1
F

where
1) z;(t) = 29 + /nw;(t) if F = 0;
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Dean-Kawasaki equation

The Dean-Kawasaki equation

0 . (% 5F(/Lt) I «

The equation is used for modeling of behaviour of huge number of particles in the

Langevin dynamics.

(K. Kawasaki '94; D. Dean '96; A. Donev, E. Vanden-Eijnden '14, '15;
B. Derrida '16; J. Zimmer '19; B. Gess '19)

F corresponds for the interaction between particles

Does the D-K equation have solutions for every o > 0, any initial condition pg
and interaction potential F'.
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Definition of solution to the Dean-Kawasaki equation

L.
atlu’t -

Definition of (martingale) solution

A continuous process p;, t > 0 is a solution to (DK% eq) if, for every
p € Go(RY)

oF .
SAu+ V- (utv 5(’“)) +9 - (Vi) (DK% eq)
Mt

a [ t OF (s
<30aluft>:<§07,u0>+§/0 <A§07,us>ds_/0 <V90V6('UI),/1'S>dS+Mt¢

s

where M ¥ is a martingale with quadratic variation

t
/0 IVl e)ds.
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Well-posedness of Dean-Kawasaki equation

Let y10(R?) =1, and F be smooth and bounded. Then the equation
7]

« OF
a/‘t = EAMt + V. (,Utv ('ut)

Oput ) v <\/MWt>
has a (unique) solution iff & = n and po = L 37" |5,
defined as above:

0.
7

Moreover, it is

1 n
Ht = n Zawi(t)'
i=1

Elect. Comm. Probab '19 for F' = 0; J. Stat. Phys. '20 for F' smooth




Singular interaction potential
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To have the equation which has no trivial solutions,
a singular " is needed!



Singular interaction potential

0 o .
M= §A/ﬁt + () +V - (\@Wt)

To have the equation which has no trivial solutions,
a singular " is needed!

There is known a singular I' such that the D-K equation has a solution u; which is
the Wasserstein diffusion that is a Markov process with some invariant measure.

(von Renesse, Sturm '09)



Singular interaction potential

0 a .
(“)tut = §A,ut + () + V- (\/,EWf)

To have the equation which has no trivial solutions,
a singular " is needed!

There is known a singular I' such that the D-K equation has a solution u; which is
the Wasserstein diffusion that is a Markov process with some invariant measure.

(von Renesse, Sturm '09)

Aim of my talk: We are going to use a particle approach in order to have
another models which can solve the D-K equation (with another I').



Modified Massive Arratia Flow (on R)



Some observation

Let wy, wo be independent Brownian motions on R with diffusion rates a1, as

it = 100, (¢) + M200y (1)
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Some observation

Let wy, wo be independent Brownian motions on R with diffusion rates a1, as

ot 2= M0, (1) + M200, (1)
By the Ito formula:
(0, ) =map(wi(t)) + map(we(t))
1 t
zibdd. variation +/ [m1p(wi(s))dwi(s) + map(wa(s))dws(s)]
0
So, its quadratic variation is
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Some observation

Let wy, wo be independent Brownian motions on R with diffusion rates a1, as

it = 100, (¢) + M200y (1)
By the Ito formula:

(0, ) =map(wi(t)) + magp(wa(t))
t
:%bdd. variation +/ [m1p(wi(s))dwi(s) + map(wa(s))dws(s)]
0
So, its quadratic variation is

if(l1 =

ma”

t t
/ (m3(wy(s))%ar + m3p(wn(s))2az) ds = / (62 s ds,
0 0

o and ap = o
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Some observation

Let wy, wo be independent Brownian motions on R with diffusion rates a1, as

it 2= 100, (2) + M20u, (1)
By the Ito formula:
(0, ) =map(wi(t)) + map(we(t))

1 t
zibdd. variation +/ [m1p(wi(s))dwi(s) + map(wa(s))dws(s)]
0
So, its quadratic variation is

¢
ifalzmilandagzmiz.

/ (mip(wi(s))*ar + m3p(wa(s))*az) ds = /
0

o <gb2,,us)ds,

The diffusion rate of each particle has to be inversely

proportional to its mass!
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n-particle system

Consider n particle system on R such that

o particles start from points -, i = 1,...,n with masses % and move as
Brownian motions;

o diffusion rate of each particle inversely depends on its mass;

o particles move independently of each other and coalesce after meeting.
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n-particle system as a family of martingales

o AN
AN w"’ \"“W"“ '\-u-,v
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N 7
VN A g N

Let ;(t) be the position of particle at time ¢ starting from % i=1,...

x; is a continuous square integrable martingale for all 4.
z;(0) = =,

xi(t) < xj(t) i<j,t>0;

xz t — fO ml(s '

where m;(t) = ;{7 zi(t) = z;(t)};
[,z =0, t <75,

where 7; ; = inf{t : z;(t) = x;(t)}.

@@@@
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Infinite particle system

Set




Infinite particle system

Set

There exists a subsequence X, , kK > 1, which converges to a process X which
satisfies the following properties
@ X(u,-) is continuous matringale for all u;
@ X(u,0)=wu, u € [0,1];
@ X(u,t) < X(v, t) u < v;
[X(U, fO m(u m(u,s)’
where m(u t) = Leb{v: X(u,t) = X(v,t)};

(€] [X(u7 '),X(’U, )]t =0,t< Tu,v,
where 7y, =inf {t : X(u,t) = X (v,t)}.
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@ X(u,-) is continuous matringale for all u;
@ X(u,0)=wu, uel01];
@ X(u,t) < X(v, t) u < v;
Q [X(U, fO m(u m(u,s)’
where m(u,t) =Leb{v: X(u,t) = X(v,t)};
e [X(u7 ')5 X(Uv )]t = 0' t< Tu,vy
where 7y, =inf {t : X(u,t) = X (v,t)}.
[m] = = =
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Infinite particle system

Set

satisfies the following properties
@ X(u,-) is continuous matringale for all u;
@ X(u,0) =u, uel0,1];
@ X(u, t)<X(v t) u < v;
@ [X(u, )= J; m(u 5
where m(u t) = Leb{v: X(u,t) = X(v,t)};

Q [X(u7 ')7X(U7 )]t = 01 t< Tu,vy
where 7, , = inf {t : X(u,t) = X(v,t)}.

\.

There exists a subsequence X, , kK > 1, which converges to a process X which

Open problems:
@ Does the sequence X,,, n > 1, converges to X7
@ Does Conditions 1.-5. uniquely determine the distribu%ijon

of X7
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Some basic properties of modified massive Arratia flow
Let T > 0.

@ Let N(t) be a number of distinct particles at time ¢. Then

1 C
E < = 1], ¢t
m(u,t) — %7 u e [03 ]7 E [O?T]
and hence .
EN(t) = E / du_
o m(u,t)

c
= te O,T,
7 [0,T]




Some basic properties of modified massive Arratia flow

Let T > 0.

@ Let N(t) be a number of distinct particles at time ¢. Then

1

C
E < =
m(u,t) =t

€[0,1], te[0,T]

and hence

EN(t):IE/O1 (d“ ) <3 te[0,T];

@ The process X (+,t), t > 0, takes values in
LY = {g € Ly[0,1] : g is non-decreasing}

and is continuous.



LDP for modified massive Arratia flow

Let w(t), t € [0,7T], be a Brownian motion in R? starting at 2o and
we(t) = w(et). Then {w.} . satisfies the LDP in C([0,T], R?) with the rate

function .
1) = |30 16W®IEadt, o € HE (0, 7). RY),
+00, otherwise.

Roughly speaking
-1 inf T
P{w. € B()} ~e "2 e 04



LDP for modified massive Arratia flow

Let w(t), t € [0, 7], be a Brownian motion in R? starting at 2 and
we(t) = w(et). Then {w.} . satisfies the LDP in C([0,T], R?) with the rate

function
d
I(g) = { Ly ()12t @GH;O([O,T],R),
00, otherwise.

Roughly speaking

—1 inf 1
Plu.€ By ()} ~e o0, cs0+.

The family X, = {X (u,et), v € [0,1],¢t € [0,T]}, € > 0, satisfies the LDP
in C([0, 7], L) with rate function

LT e@)3,dt, o e HA([0,T],LY),
I(p) = ‘
+ 00, otherwise.

Hy([0,T),L}) = {np € C([0,T],LY) : o(t) =id+ [y p(t)dt, [ |2, dt < +oc}

\ i . e . e . s e i




A consequence from LDP

Let w(t), t € [0, 7], be a standard Brownian motion in R? starting at z
Let T = 1. Then w.(1) = w(e) satisfies the LDP in R%:

—1 inf
P{w(e) € B.(y)} ~e "~=eBr®

lleo 12 4

2

)

e—0+.




A consequence from LDP

Let w(t), t € [0,7T), be a standard Brownian motion in R? starting at z.
Let T = 1. Then w.(1) = w(e) satisfies the LDP in R%:

2
1 lzo—=llga
p)

P {w(c) € By(y)} ~e °=<Brw . e 0+,

Varadhan formula (Varadhan, CPAM ’87):
If w(t), t >0, is a Brownian motion of a Riemannian manifold, then

2
inf (1(102,71:)

_1
P{w(e) € B.(y)} ~e "~=cBr® , e—0+.

where d is the geodesic distance.



A consequence from LDP

Let w(t), t € [0, 7], be a standard Brownian motion in R? starting at .
Let T =1. Then w.(1) = w(¢) satisfies the LDP in R<:

2
L. llzo—=ll2,

P{w(e) € By(y)} ~e ~o€Br®  ° 250+,

Varadhan formula (Varadhan, CPAM ’87):
If w(t), t >0, is a Brownian motion of a Riemannian manifold, then

1 g degw?
P{w(e) € B.(y)} ~e "=t 7 2 504,

where d is the geodesic distance.

The family X (-,), & > 0, satisfies the LDP in LJ:

i 2
. lid=gll},
€

inf
P{X(-,e) € B.(f)} ~e ~=Br T e 0+.




Dean-Kawasaki equation and modified massive Arratia flow

He = X(a t)# Lebla
where Leb; = Leb [fg 3.

t>0,
@ The process 1y, t > 0, solves the equation

where i}

We consider the evolution of particle mass in the modified massive Arratia flow:

1

d,ut = iAut dt P le(\/[Ttth),
= Z:GDGSUPP e O

@ The Varadhan formula:

inf

_1
P{ue € B, (1)} ~ e " o<

3y, (Leby,p)
2

, €— 0+
where dyy denotes the Wasserstein distance on the space of
probability measures P5(R) on R with finite second moment.
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