A particle model for Wasserstein type diffusion

Vitalii Konarovskyi

Hamburg University

Kolloquium über Mathematische Statistik und Stochastische Prozesse, 2020

・ロト ・日ト ・ヨト ・ヨー うへぐ

Dean-Kawasaki Equation

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

Systems of interacting particles in random environment

Consider a system of SDEs in \mathbb{R}^d

$$dx_i(t) = -\sum_{j=1}^n \nabla V(x_i(t) - x_j(t))dt + \sqrt{n}dw_i(t)$$
$$x_i(0) = x_i^0, \qquad i = 1, \dots, n,$$

where w_i are independent Brownian motions and V is an interaction potential

This system of equation is not convenient for description of a large particle system

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

9 g (?

Systems of interacting particles in random environment

Consider a system of SDEs in \mathbb{R}^d

$$dx_{i}(t) = -\sum_{j=1}^{n} \nabla V(x_{i}(t) - x_{j}(t))dt + \sqrt{n}dw_{i}(t)$$
$$x_{i}(0) = x_{i}^{0}, \qquad i = 1, \dots, n,$$

where w_i are independent Brownian motions and V is an interaction potential

This system of equation is not convenient for description of a large particle system

<ロト < 団 > < 臣 > < 臣 > 三 の < で</p>

Let V = 0 (no interaction) and d = 1. Take

$$\mu_t := \sum_{i=1}^n \frac{1}{n} \delta_{x_i(t)} = \frac{1}{n} \sum_{i=1}^n \delta_{\sqrt{n}w_k(t)}, \quad t \ge 0.$$

Use Ito's formula to $\langle \varphi, \mu_t \rangle = \int_R \varphi d\mu_t = \frac{1}{n} \sum_{i=1}^n \varphi(x_i(t))$:

$$d\langle\varphi,\mu_t\rangle = \frac{1}{2n} \sum_{i=1}^n \varphi''(x_i(t))ndt + \frac{1}{n} \sum_{i=1}^n \varphi'(x_i(t))dx_i(t)$$
$$= \frac{n}{2} \langle\varphi'',\mu_t\rangle dt + dM_t^{\varphi}$$

where M_t^{φ} is a martingale with q.v.

$$[M^{\varphi}]_{t} = \frac{n}{n^{2}} \int_{0}^{t} \sum_{i=1}^{n} \varphi'(x_{i}(s))^{2} dt = \int_{0}^{t} \left\langle (\varphi')^{2}, \mu_{s} \right\rangle ds$$

Let V = 0 (no interaction) and d = 1. Take

$$\mu_t := \sum_{i=1}^n \frac{1}{n} \delta_{x_i(t)} = \frac{1}{n} \sum_{i=1}^n \delta_{\sqrt{n}w_k(t)}, \quad t \ge 0.$$

Use Ito's formula to $\langle \varphi, \mu_t \rangle = \int_R \varphi d\mu_t = \frac{1}{n} \sum_{i=1}^n \varphi(x_i(t))$:

$$d\langle\varphi,\mu_t\rangle = \frac{1}{2n} \sum_{i=1}^n \varphi''(x_i(t)) \mathbf{n} dt + \frac{1}{n} \sum_{i=1}^n \varphi'(x_i(t)) dx_i(t)$$
$$= \frac{n}{2} \langle\varphi'',\mu_t\rangle dt + dM_t^{\varphi}$$

where M_t^{φ} is a martingale with q.v.

$$[M^{\varphi}]_{t} = \frac{n}{n^{2}} \int_{0}^{t} \sum_{i=1}^{n} \varphi'(x_{i}(s))^{2} dt = \int_{0}^{t} \left\langle (\varphi')^{2}, \mu_{s} \right\rangle ds$$

▲ロト ▲園ト ▲ミト ▲ミト ニミニ のへで

Let V = 0 (no interaction) and d = 1. Take

$$\mu_t := \sum_{i=1}^n \frac{1}{n} \delta_{x_i(t)} = \frac{1}{n} \sum_{i=1}^n \delta_{\sqrt{n}w_k(t)}, \quad t \ge 0.$$

Use Ito's formula to $\langle \varphi, \mu_t \rangle = \int_R \varphi d\mu_t = \frac{1}{n} \sum_{i=1}^n \varphi(x_i(t))$:

$$d\langle\varphi,\mu_t\rangle = \frac{n}{2}\frac{1}{n}\sum_{i=1}^n \varphi''(x_i(t))dt + \frac{1}{n}\sum_{i=1}^n \varphi'(x_i(t))dx_i(t)$$
$$= \frac{n}{2}\langle\varphi'',\mu_t\rangle dt + dM_t^{\varphi}$$

where M_t^{φ} is a martingale with q.v.

$$[M^{\varphi}]_{t} = \frac{n}{n^{2}} \int_{0}^{t} \sum_{i=1}^{n} \varphi'(x_{i}(s))^{2} dt = \int_{0}^{t} \left\langle (\varphi')^{2}, \mu_{s} \right\rangle ds$$

▲ロト ▲園ト ▲ミト ▲ミト ニミニ のへで

Let V = 0 (no interaction) and d = 1. Take

$$\mu_t := \sum_{i=1}^n \frac{1}{n} \delta_{x_i(t)} = \frac{1}{n} \sum_{i=1}^n \delta_{\sqrt{n}w_k(t)}, \quad t \ge 0.$$

Use Ito's formula to $\langle \varphi, \mu_t \rangle = \int_R \varphi d\mu_t = \frac{1}{n} \sum_{i=1}^n \varphi(x_i(t))$:

$$d\langle\varphi,\mu_t\rangle = \frac{n}{2}\frac{1}{n}\sum_{i=1}^n \varphi''(x_i(t))dt + \frac{1}{n}\sum_{i=1}^n \varphi'(x_i(t))dx_i(t)$$
$$= \frac{n}{2}\langle\varphi'',\mu_t\rangle dt + dM_t^{\varphi}$$

where M_t^{φ} is a martingale with q.v.

$$[M^{\varphi}]_{t} = \frac{n}{n^{2}} \int_{0}^{t} \sum_{i=1}^{n} \varphi'(x_{i}(s))^{2} dt = \int_{0}^{t} \left\langle (\varphi')^{2}, \mu_{s} \right\rangle ds$$

◆ロト ◆母ト ◆臣ト ◆臣ト 三臣 - のへで

For every $\varphi \in \mathsf{C}^2_b(\mathbb{R})$ the process $\mu_t = rac{1}{n}\sum_{i=1}^n \delta_{\sqrt{n}w_i(t)}$ satisfies

$$\langle \varphi, \mu_t \rangle = \langle \varphi, \mu_0 \rangle + \frac{n}{2} \int_0^t \langle \varphi'', \mu_s \rangle ds + M_t^{\varphi}$$

where M^{φ} is a martingale with q.v.

$$[M^{\varphi}]_t = \int_0^t \langle (\varphi')^2, \mu_s \rangle ds.$$

Formally, μ_t solves the equation

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right)$$

- **Dean-Kawasaki equation** for $\alpha = n$ and V = 0

For every $\varphi \in \mathsf{C}^2_b(\mathbb{R})$ the process $\mu_t = rac{1}{n}\sum_{i=1}^n \delta_{\sqrt{n}w_i(t)}$ satisfies

$$\langle \varphi, \mu_t \rangle = \langle \varphi, \mu_0 \rangle + \frac{n}{2} \int_0^t \langle \varphi'', \mu_s \rangle ds + M_t^{\varphi}$$

where M^{φ} is a martingale with q.v.

$$[M^{\varphi}]_t = \int_0^t \langle (\varphi')^2, \mu_s \rangle ds.$$

Formally, μ_t solves the equation

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right)$$

- **Dean-Kawasaki equation** for $\alpha = n$ and V = 0

For every $\varphi \in \mathsf{C}_b^2(\mathbb{R})$ the process $\mu_t = \frac{1}{n} \sum_{i=1}^n \delta_{\sqrt{n}w_i(t)}$ satisfies $\langle \varphi, \mu_t \rangle = \langle \varphi, \mu_0 \rangle + \frac{n}{2} \int_0^t \langle \varphi'', \mu_s \rangle ds + M_t^{\varphi}$

where M^{φ} is a martingale with q.v.

$$[M^{\varphi}]_t = \int_0^t \langle (\varphi')^2, \mu_s \rangle ds$$

Formally, μ_t solves the equation

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\mu_t\nabla\frac{\delta F(\mu_t)}{\delta\mu_t}\right) + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right)$$

- **Dean-Kawasaki equation** for $\alpha = n$ and $F(\mu) = \frac{1}{2} \int_{\mathbb{R}} \int_{\mathbb{R}} V(x-y)\mu(dx)\mu(dy)$ $\frac{\delta F(\mu)}{\delta \mu}(x) = \lim_{\varepsilon \to 0+} \frac{F(\mu+\varepsilon\delta_x)-F(\mu)}{\varepsilon} = \int_{\mathbb{R}} V(x-y)\mu(dy)$, if V(x) = V(-x)

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\mu_t\nabla\frac{\delta F(\mu_t)}{\delta\mu_t}\right) + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right) \qquad \qquad (\mathsf{DK}_F^\alpha \text{ eq})$$

《口》 《圖》 《臣》 《臣》

200

1

The equation is used for modeling of behaviour of huge number of particles in the Langevin dynamics.

(K. Kawasaki '94; D. Dean '96; A. Donev, E. Vanden-Eijnden '14, '15; B. Derrida '16; J. Zimmer '19; B. Gess '19)

F corresponds for the interaction between particles

Does the D-K equation have solutions for every lpha>0, any initial condition μ_0 and interaction potential F.

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\mu_t\nabla\frac{\delta F(\mu_t)}{\delta\mu_t}\right) + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right) \qquad (\mathsf{DK}_F^\alpha \text{ eq})$$

<ロト <部ト < Eト < Eト = E

200

The equation is used for modeling of behaviour of huge number of particles in the Langevin dynamics.

(K. Kawasaki '94; D. Dean '96; A. Donev, E. Vanden-Eijnden '14, '15; B. Derrida '16; J. Zimmer '19; B. Gess '19)

F corresponds for the interaction between particles

Does the D-K equation have solutions for every $\alpha > 0$, any initial condition μ_0 and interaction potential F.

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\mu_t\nabla\frac{\delta F(\mu_t)}{\delta\mu_t}\right) + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right) \qquad (\mathsf{DK}_F^\alpha \text{ eq})$$

Th the A solution to the D-K equation for $\alpha = n$, $\mu_0 = \frac{1}{n} \sum_{i=1}^n \delta_{x_i^0}$. Lar (K. B. $\mu_t = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$ F Do and where 1) $x_i(t) = x_i^0 + \sqrt{n}w_i(t)$ if F = 0;

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆ ◆○ ◆

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\mu_t\nabla\frac{\delta F(\mu_t)}{\delta\mu_t}\right) + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right) \qquad (\mathsf{DK}_F^\alpha \text{ eq})$$

A solution to the D-K equation for $\alpha = n$, $\mu_0 = \frac{1}{n} \sum_{i=1}^n \delta_{x_i^0}$:

$$\mu_t = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$$

where

Th

Lar (K. B.

F

1)
$$x_i(t) = x_i^0 + \sqrt{n}w_i(t)$$
 if $F = 0$;
2) $dx_i(t) = -\sum_{j=1}^n \nabla V(x_i(t) - x_j(t))dt + \sqrt{n}dw_i(t)$

if $F(\mu) = \frac{1}{2} \int_{\mathbb{R}} \int_{\mathbb{R}} V(x-y)\mu(dx)\mu(dy)$ and V(x) = V(-x)

the

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\mu_t\nabla\frac{\delta F(\mu_t)}{\delta\mu_t}\right) + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right) \qquad (\mathsf{DK}_F^\alpha \text{ eq})$$

・ロト ・四ト ・三ト ・三ト 三日

200

The equation is used for modeling of behaviour of huge number of particles in the Langevin dynamics.

(K. Kawasaki '94; D. Dean '96; A. Donev, E. Vanden-Eijnden '14, '15; B. Derrida '16; J. Zimmer '19; B. Gess '19)

F corresponds for the interaction between particles

Does the D-K equation have solutions for every $\alpha > 0$, any initial condition μ_0 and interaction potential F.

Definition of solution to the Dean-Kawasaki equation

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\mu_t\nabla\frac{\delta F(\mu_t)}{\delta\mu_t}\right) + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right) \qquad (\mathsf{DK}_F^\alpha \text{ eq})$$

Definition of (martingale) solution

A continuous process $\mu_t,\ t\geq 0$ is a solution to $\left(\mathsf{DK}_F^\alpha\operatorname{eq}\right)$ if, for every $\varphi\in\mathsf{C}_b^2(\mathbb{R}^d)$

$$\langle \varphi, \mu_t \rangle = \langle \varphi, \mu_0 \rangle + \frac{\alpha}{2} \int_0^t \langle \Delta \varphi, \mu_s \rangle ds - \int_0^t \left\langle \nabla \varphi \cdot \nabla \frac{\delta F(\mu_s)}{\delta \mu_s}, \mu_s \right\rangle ds + M_t^{\varphi}$$

where M^{φ} is a martingale with quadratic variation

$$\int_0^t \langle |
abla arphi|^2, \mu_s
angle ds.$$

▲ロト ▲団ト ▲ヨト ▲ヨト ヨー のへで

Theorem (K., T. Lehmann, M. von Renesse)

Let $\mu_0(\mathbb{R}^d) = 1$, and F be smooth and bounded. Then the equation

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \nabla\cdot\left(\mu_t\nabla\frac{\delta F(\mu_t)}{\delta\mu_t}\right) + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right)$$

has a (unique) solution iff $\alpha = n$ and $\mu_0 = \frac{1}{n} \sum_{i=1}^n \delta_{x_i^0}$. Moreover, it is defined as above:

$$\mu_t = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$$

+ 다 > + 라 > + 분 > + 분 > - 분

900

Elect. Comm. Probab '19 for F = 0; J. Stat. Phys. '20 for F smooth

Singular interaction potential

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \Gamma(\mu_t) + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right)$$

To have the equation which has no trivial solutions, a singular Γ is needed!

There is known a singular Γ such that the D-K equation has a solution μ_t which is the **Wasserstein diffusion** that is a Markov process with some invariant measure. (von Renesse, Sturm '09)

《曰》 《圖》 《臣》 《臣》

200

Aim of my talk: We are going to use a particle approach in order to have another models which can solve the D-K equation (with another Γ).

Singular interaction potential

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \Gamma(\mu_t) + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right)$$

To have the equation which has no trivial solutions, a singular Γ is needed!

There is known a singular Γ such that the D-K equation has a solution μ_t which is the **Wasserstein diffusion** that is a Markov process with some invariant measure. (von Renesse, Sturm '09)

<ロト <部ト < Eト < Eト = E

900

Aim of my talk: We are going to use a particle approach in order to have another models which can solve the D-K equation (with another Γ).

Singular interaction potential

$$\frac{\partial}{\partial t}\mu_t = \frac{\alpha}{2}\Delta\mu_t + \Gamma(\mu_t) + \nabla\cdot\left(\sqrt{\mu_t}\dot{W}_t\right)$$

To have the equation which has no trivial solutions, a singular Γ is needed!

There is known a singular Γ such that the D-K equation has a solution μ_t which is the **Wasserstein diffusion** that is a Markov process with some invariant measure. (von Renesse, Sturm '09)

Aim of my talk: We are going to use a particle approach in order to have another models which can solve the D-K equation (with another Γ).

Modified Massive Arratia Flow (on \mathbb{R})

▲ロト ▲御ト ▲臣ト ▲臣ト 三臣 - のへで

Let w_1, w_2 be independent Brownian motions on $\mathbb R$ with diffusion rates a_1, a_2

$$\mu_t := m_1 \delta_{w_1(t)} + m_2 \delta_{w_2(t)}$$

By the Ito formula:

$$\begin{split} \langle \varphi, \mu_t \rangle = & m_1 \varphi(w_1(t)) + m_2 \varphi(w_2(t)) \\ = & \frac{1}{2} \mathsf{bdd. variation} + \int_0^t [m_1 \dot{\varphi}(w_1(s)) dw_1(s) + m_2 \dot{\varphi}(w_2(s)) dw_2(s)] \end{split}$$

So, its quadratic variation is

$$\int_0^t \left(m_1^2 \dot{\varphi}(w_1(s))^2 a_1 + m_2^2 \dot{\varphi}(w_2(s))^2 a_2 \right) ds = \int_0^t \langle \dot{\varphi}^2, \mu_s \rangle ds,$$

= $\frac{1}{m_1}$ and $a_2 = \frac{1}{m_2}$.

The diffusion rate of each particle has to be inversely proportional to its mass!

Let w_1, w_2 be independent Brownian motions on $\mathbb R$ with diffusion rates a_1, a_2

$$\mu_t := m_1 \delta_{w_1(t)} + m_2 \delta_{w_2(t)}$$

By the Ito formula:

$$\begin{split} \langle \varphi, \mu_t \rangle = & m_1 \varphi(w_1(t)) + m_2 \varphi(w_2(t)) \\ = & \frac{1}{2} \text{bdd. variation} + \int_0^t \left[m_1 \dot{\varphi}(w_1(s)) dw_1(s) + m_2 \dot{\varphi}(w_2(s)) dw_2(s) \right] \end{split}$$

So, its quadratic variation is

$$\int_0^t \left(m_1^2 \dot{arphi}(w_1(s))^2 a_1 + m_2^2 \dot{arphi}(w_2(s))^2 a_2
ight) ds = \int_0^t \langle \dot{arphi}^2, \mu_s
angle ds,$$

 $a_1 = rac{1}{m_1} ext{ and } a_2 = rac{1}{m_2}.$

The diffusion rate of each particle has to be inversely proportional to its mass!

Let w_1, w_2 be independent Brownian motions on $\mathbb R$ with diffusion rates a_1, a_2

$$\mu_t := m_1 \delta_{w_1(t)} + m_2 \delta_{w_2(t)}$$

By the Ito formula:

$$\begin{split} \langle \varphi, \mu_t \rangle = & m_1 \varphi(w_1(t)) + m_2 \varphi(w_2(t)) \\ = & \frac{1}{2} \text{bdd. variation} + \int_0^t \left[m_1 \dot{\varphi}(w_1(s)) dw_1(s) + m_2 \dot{\varphi}(w_2(s)) dw_2(s) \right] \end{split}$$

So, its quadratic variation is

$$\int_0^t \left(m_1^2 \dot{\varphi}(w_1(s))^2 a_1 + m_2^2 \dot{\varphi}(w_2(s))^2 a_2 \right) ds = \int_0^t \langle \dot{\varphi}^2, \mu_s \rangle ds,$$
 if $a_1 = \frac{1}{m_1}$ and $a_2 = \frac{1}{m_2}$.

The diffusion rate of each particle has to be inversely proportional to its mass!

Let w_1, w_2 be independent Brownian motions on $\mathbb R$ with diffusion rates a_1, a_2

$$\mu_t := m_1 \delta_{w_1(t)} + m_2 \delta_{w_2(t)}$$

By the Ito formula:

$$\begin{split} \langle \varphi, \mu_t \rangle = & m_1 \varphi(w_1(t)) + m_2 \varphi(w_2(t)) \\ = & \frac{1}{2} \text{bdd. variation} + \int_0^t \left[m_1 \dot{\varphi}(w_1(s)) dw_1(s) + m_2 \dot{\varphi}(w_2(s)) dw_2(s) \right] \end{split}$$

So, its quadratic variation is

$$\int_0^t \left(m_1^2 \dot{\varphi}(w_1(s))^2 a_1 + m_2^2 \dot{\varphi}(w_2(s))^2 a_2 \right) ds = \int_0^t \langle \dot{\varphi}^2, \mu_s \rangle ds,$$
 if $a_1 = \frac{1}{m_1}$ and $a_2 = \frac{1}{m_2}$.

The diffusion rate of each particle has to be inversely proportional to its mass!

n-particle system

Consider n particle system on ${\mathbb R}$ such that

- particles start from points $\frac{i}{n}$, i = 1, ..., n with masses $\frac{1}{n}$ and move as Brownian motions;
- diffusion rate of each particle inversely depends on its mass;
- particles move independently of each other and coalesce after meeting.

n-particle system as a family of martingales

Let $x_i(t)$ be the position of particle at time t starting from $\frac{i}{n}$, i = 1, ..., n then x_i is a continuous square integrable martingale for all i.

2 $x_i(0) = \frac{i}{n}$;
3 $x_i(t) \le x_j(t), i < j, t \ge 0$;
4 $[x_i]_t = \int_0^t \frac{ds}{m_i(s)},$ where $m_i(t) = \frac{1}{n} |\{j : x_i(t) = x_j(t)\}|$;
5 $[x_i, x_j]_t = 0, t < \tau_{i,j},$ where $\tau_{i,j} = \inf\{t : x_i(t) = x_j(t)\}.$

- イロト (日) (三) (三) (三) (の)()

Infinite particle system

Set

$$X_n(u,t) = \sum_{i=1}^n x_i^n(t) \mathbb{I}_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(u), \quad u \in [0,1], \quad t \ge 0;$$

Theorem 🦳 (K., Ann. Probab. '17

There exists a subsequence X_{n_k} , $k\geq 1$, which converges to a process X which satisfies the following properties

- 1 $X(u, \cdot)$ is continuous matringale for all u;
- ② X(u,0) = u, $u \in [0,1]$;
- (3) $X(u,t) \leq X(v,t)$, u < v;

④
$$[X(u, \cdot)]_t = \int_0^t \frac{ds}{m(u,s)}$$
,
where $m(u,t) = \text{Leb}\{v : X(u,t) = X(v,t)\}$;

$$[X(u, \cdot), X(v, \cdot)]_t = 0, t < \tau_{u,v},$$

where $\tau_{u,v} = \inf \{t : X(u, t) = X(v, t)\}$

Infinite particle system

Set

$$X_n(u,t) = \sum_{i=1}^n x_i^n(t) \mathbb{I}_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(u), \quad u \in [0,1], \quad t \ge 0;$$

Theorem (K., Ann. Probab. '17)

There exists a subsequence X_{n_k} , $k \ge 1$, which converges to a process X which satisfies the following properties

1 $X(u, \cdot)$ is continuous matringale for all u;

②
$$X(u,0) = u, u \in [0,1];$$

④
$$[X(u, \cdot)]_t = \int_0^t \frac{ds}{m(u,s)}$$
,
where $m(u,t) = \text{Leb}\{v : X(u,t) = X(v,t)\}$;

5
$$[X(u, \cdot), X(v, \cdot)]_t = 0, t < \tau_{u,v},$$

where $\tau_{u,v} = \inf \{t : X(u,t) = X(v,t)\}$

<ロト < 団 > < 臣 > < 臣 > 三 の < で</p>

Infinite particle system

Set

$$X_n(u,t) = \sum_{i=1}^n x_i^n(t) \mathbb{I}_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}(u), \quad u \in [0,1], \quad t \ge 0;$$

Theorem (K., Ann. Probab. '17)

There exists a subsequence X_{n_k} , $k \ge 1$, which converges to a process X which satisfies the following properties

1 $X(u, \cdot)$ is continuous matringale for all u;

2
$$X(u,0) = u, u \in [0,1];$$

(3)
$$X(u,t) \le X(v,t), \quad u < v;$$

④
$$[X(u, \cdot)]_t = \int_0^t \frac{ds}{m(u,s)}$$
,
where $m(u,t) = \text{Leb}\{v : X(u,t) = X(v,t)\}$;

5
$$[X(u, \cdot), X(v, \cdot)]_t = 0, t < \tau_{u,v},$$

where $\tau_{u,v} = \inf \{t : X(u,t) = X(v,t)\}.$

Open problems:

- 1 Does the sequence X_n , $n \ge 1$, converges to X?
- 2 Does Conditions 1.-5. uniquely determine the distribution of X?

1

Some basic properties of modified massive Arratia flow

Let T > 0.

1 Let N(t) be a number of distinct particles at time t. Then

$$\mathbb{E}\frac{1}{m(u,t)} \le \frac{C}{\sqrt[3]{t}}, \quad u \in [0,1], \quad t \in [0,T]$$

and hence

$$\mathbb{E}N(t) = \mathbb{E}\int_0^1 \frac{du}{m(u,t)} \le \frac{C}{\sqrt[3]{t}}, \quad t \in [0,T];$$

② The process $X(\cdot,t)$, $t\geq 0$, takes values in

 $L_2^\uparrow=\{g\in L_2[0,1]:\; g ext{ is non-decreasing}\}$

and is continuous.

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

Some basic properties of modified massive Arratia flow

Let T > 0.

(1) Let N(t) be a number of distinct particles at time t. Then

$$\mathbb{E}\frac{1}{m(u,t)} \le \frac{C}{\sqrt[3]{t}}, \quad u \in [0,1], \quad t \in [0,T]$$

and hence

$$\mathbb{E}N(t) = \mathbb{E}\int_0^1 \frac{du}{m(u,t)} \le \frac{C}{\sqrt[3]{t}}, \quad t \in [0,T]$$

2 The process $X(\cdot, t)$, $t \ge 0$, takes values in

 $L_2^{\uparrow} = \{g \in L_2[0,1] : g \text{ is non-decreasing}\}$

and is continuous.

LDP for modified massive Arratia flow

Let w(t), $t \in [0, T]$, be a Brownian motion in \mathbb{R}^d starting at x_0 and $w_{\varepsilon}(t) = w(\varepsilon t)$. Then $\{w_{\varepsilon}\}_{\varepsilon > 0}$ satisfies the LDP in $C([0, T], \mathbb{R}^d)$ with the rate function

$$I(\varphi) = \begin{cases} \frac{1}{2} \int_0^T \|\dot{\varphi}(t)\|_{\mathbb{R}^d}^2 dt, & \varphi \in H^2_{x^0}([0,T], \mathbb{R}^d), \\ +\infty, & \text{otherwise.} \end{cases}$$

Roughly speaking

$$\mathbb{P}\left\{w_{\varepsilon}\in B_{r}(\psi)\right\}\sim e^{-\frac{1}{\varepsilon}\inf_{B_{r}(\psi)}I},\quad \varepsilon\rightarrow 0+.$$

Theorem (K., M. von Renesse, Comm. Pure Appl. Math. '19

The family $X_{\varepsilon} = \{X(u, \varepsilon t), u \in [0, 1], t \in [0, T]\}$, $\varepsilon > 0$, satisfies the LDP in $C([0, T], L_2^{\uparrow})$ with rate function

$$I(\varphi) = \begin{cases} \frac{1}{2} \int_0^T \|\dot{\varphi}(t)\|_{L_2}^2 dt, & \varphi \in H^2_{\mathrm{id}}([0,T], L_2^{\uparrow}), \\ +\infty, & \text{otherwise.} \end{cases}$$

 $H_2([0,T], L_2^{\uparrow}) = \left\{ \varphi \in \mathsf{C}([0,T], L_2^{\uparrow}) : \ \varphi(t) = \mathrm{id} + \int_0^t \dot{\varphi}(t) dt, \ \int_0^T \|\dot{\varphi}\|_{L_2}^2 dt < +\infty \right\}$

+ ロ > ・ 目 > ・ 目 > ・ 目 ・ ・ の へ ()

LDP for modified massive Arratia flow

Let w(t), $t \in [0, T]$, be a Brownian motion in \mathbb{R}^d starting at x_0 and $w_{\varepsilon}(t) = w(\varepsilon t)$. Then $\{w_{\varepsilon}\}_{\varepsilon > 0}$ satisfies the LDP in $C([0, T], \mathbb{R}^d)$ with the rate function

$$I(\varphi) = \begin{cases} \frac{1}{2} \int_0^T \|\dot{\varphi}(t)\|_{\mathbb{R}^d}^2 dt, & \varphi \in H^2_{x^0}([0,T], \mathbb{R}^d), \\ +\infty, & \text{otherwise.} \end{cases}$$

Roughly speaking

$$\mathbb{P}\left\{w_{\varepsilon}\in B_{r}(\psi)\right\}\sim e^{-\frac{1}{\varepsilon}\inf_{B_{r}(\psi)}I},\quad \varepsilon\to 0+.$$

Theorem (K., M. von Renesse, Comm. Pure Appl. Math. '19)

The family $X_{\varepsilon} = \{X(u, \varepsilon t), u \in [0, 1], t \in [0, T]\}, \varepsilon > 0$, satisfies the LDP in $C([0, T], L_2^{\uparrow})$ with rate function

$$I(\varphi) = \begin{cases} \frac{1}{2} \int_0^T \|\dot{\varphi}(t)\|_{L_2}^2 dt, & \varphi \in H^2_{\rm id}([0,T], L_2^{\uparrow}), \\ +\infty, & \text{otherwise.} \end{cases}$$

 $H_2([0,T], L_2^{\uparrow}) = \left\{ \varphi \in \mathsf{C}([0,T], L_2^{\uparrow}) : \ \varphi(t) = \mathrm{id} + \int_0^t \dot{\varphi}(t) dt, \ \int_0^T \|\dot{\varphi}\|_{L_2}^2 dt < +\infty \right\}$

A consequence from LDP

Let w(t), $t \in [0, T]$, be a standard Brownian motion in \mathbb{R}^d starting at x_0 . Let T = 1. Then $w_{\varepsilon}(1) = w(\varepsilon)$ satisfies the LDP in \mathbb{R}^d :

$$\mathbb{P}\left\{w(\varepsilon)\in B_r(y)\right\}\sim e^{-\frac{1}{\varepsilon}\inf_{x\in B_r(y)}\frac{\|x_0-x\|_{\mathbb{R}^d}^2}{2}},\quad \varepsilon\to 0+.$$

Varadhan formula (Varadhan, CPAM '87): If w(t), $t \ge 0$, is a Brownian motion of a Riemannian manifold, then

$$\mathbb{P}\left\{w(\varepsilon) \in B_r(y)\right\} \sim e^{-\frac{1}{\varepsilon} \inf_{x \in B_r(y)} \frac{d(x_0, x)^2}{2}}, \quad \varepsilon \to 0+.$$

where d is the geodesic distance.

Corollary

The family $X(\cdot, \varepsilon)$, $\varepsilon > 0$, satisfies the LDP in L_2^{\uparrow} :

$$\mathbb{P}\left\{X(\cdot,\varepsilon)\in B_r(f)\right\}\sim e^{-\frac{1}{\varepsilon}\inf_{x\in B_r(f)}\frac{\|\mathrm{id}-g\|_{L_2}^2}{2}},\quad \varepsilon\to 0+$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - の(で

A consequence from LDP

Let w(t), $t \in [0, T]$, be a standard Brownian motion in \mathbb{R}^d starting at x_0 . Let T = 1. Then $w_{\varepsilon}(1) = w(\varepsilon)$ satisfies the LDP in \mathbb{R}^d :

$$\mathbb{P}\left\{w(\varepsilon)\in B_r(y)\right\}\sim e^{-\frac{1}{\varepsilon}\inf_{x\in B_r(y)}\frac{\|x_0-x\|_{\mathbb{R}^d}^2}{2}},\quad \varepsilon\to 0+.$$

Varadhan formula (Varadhan, CPAM '87): If w(t), $t \ge 0$, is a Brownian motion of a Riemannian manifold, then

$$\mathbb{P}\left\{w(\varepsilon) \in B_r(y)\right\} \sim e^{-\frac{1}{\varepsilon} \inf_{x \in B_r(y)} \frac{d(x_0, x)^2}{2}}, \quad \varepsilon \to 0+.$$

where d is the geodesic distance.

Corollary

The family $X(\cdot, \varepsilon)$, $\varepsilon > 0$, satisfies the LDP in L_2^{\uparrow} :

$$\mathbb{P}\left\{X(\cdot,\varepsilon)\in B_r(f)\right\}\sim e^{-\frac{1}{\varepsilon}\inf_{x\in B_r(f)}\frac{\|\mathrm{id}-g\|_{L_2}^2}{2}},\quad \varepsilon\to 0-1$$

▲ロト ▲御ト ▲ヨト ▲ヨト ニヨー わらぐ

A consequence from LDP

Let w(t), $t \in [0, T]$, be a standard Brownian motion in \mathbb{R}^d starting at x_0 . Let T = 1. Then $w_{\varepsilon}(1) = w(\varepsilon)$ satisfies the LDP in \mathbb{R}^d :

$$\mathbb{P}\left\{w(\varepsilon)\in B_r(y)\right\}\sim e^{-\frac{1}{\varepsilon}\inf_{x\in B_r(y)}\frac{\|x_0-x\|_{\mathbb{R}^d}^2}{2}},\quad \varepsilon\to 0+.$$

Varadhan formula (Varadhan, CPAM '87): If w(t), $t \ge 0$, is a Brownian motion of a Riemannian manifold, then

$$\mathbb{P}\left\{w(\varepsilon) \in B_r(y)\right\} \sim e^{-\frac{1}{\varepsilon} \inf_{x \in B_r(y)} \frac{d(x_0, x)^2}{2}}, \quad \varepsilon \to 0+.$$

where d is the geodesic distance.

Corollary

The family $X(\cdot,\varepsilon)$, $\varepsilon > 0$, satisfies the LDP in L_2^{\uparrow} :

$$\mathbb{P}\left\{X(\cdot,\varepsilon)\in B_r(f)\right\}\sim e^{-\frac{1}{\varepsilon}\inf_{x\in B_r(f)}\frac{\|\mathrm{id}-g\|_{L_2}^2}{2}},\quad \varepsilon\to 0+$$

< D > < 0 > <</p>

Dean-Kawasaki equation and modified massive Arratia flow

We consider the evolution of particle mass in the modified massive Arratia flow:

$$\mu_t = X(\cdot, t)_{\#} \operatorname{Leb}_1, \quad t \ge 0,$$

where $Leb_1 = Leb|_{[0,1]}$.

Theorem (K., M. von Renesse, Comm. Pure Appl. Math. '19)

1 The process μ_t , $t \ge 0$, solves the equation

$$d\mu_t = \frac{1}{2}\Delta\mu_t^* dt + \operatorname{div}(\sqrt{\mu_t} dW_t),$$

where $\mu_t^* = \sum_{x \in \operatorname{supp} \mu_t} \delta_x$.

2 The Varadhan formula:

$$\mathbb{P}\{\mu_{\varepsilon} \in B_r(\nu)\} \sim e^{-\frac{1}{\varepsilon} \inf_{\rho \in B_r(\nu)} \frac{d_{\mathcal{W}}^2(\operatorname{Leb}_1,\rho)}{2}}, \quad \varepsilon \to 0+$$

where $d_{\mathcal{W}}$ denotes the Wasserstein distance on the space of probability measures $\mathcal{P}_2(\mathbb{R})$ on \mathbb{R} with finite second moment.

References

- V. Konarovskyi, T. Lehmann and M. von Renesse. Dean-Kawasaki dynamics: Ill-posedness vs. Triviality *Elect. Comm. Probab*, Vol. 24 (2019), no. 8, 9 pp.
- V. Konarovskyi, T. Lehmann and M. von Renesse. On Dean-Kawasaki Dynamics with Smooth Drift Potential J. Stat. Phys., Vol. 178 (2020), no. 3, 666-681.

V. Konarovskyi.

A system of coalescing heavy diffusion particles on the real line *Ann. Probab*, Vol. 45 (2017), no. 5, 3293-3335.

V. Konarovskyi and M. von Renesse. Modified massive Arratia flow and Wasserstein diffusion *Comm. Pure Appl. Math.*, Vol. 72 (2019), no. 4, 764-800.

Thank you!

《曰》 《圖》 《臣》 《臣》

200

E