Stochastic Block Model in a new critical regime and the Interacting Multiplicative Coalescent

Vitalii Konarovskyi ${ }^{*} \dagger$

*Leipzig University
${ }^{\dagger}$ Institute of Mathematics of NAS of Ukraine
Bernoulli-IMS One World Symposium 2020
joint work with Vlada Limic

UNIVERSITAT LEIPZIG

Stochastic Block Model

Stochastic Block Model $G(n, p, q)$ is a random graph such that:

- consists of $n m$ vertices divided into m subsets $(m=2)$;
- edges are drown independently;
- intra class edges appear with probability $p=p_{n}$;
- inter class edges appear with probability $q=q_{n}$.

Stochastic Block Model

Stochastic Block Model $G(n, p, q)$ is a random graph such that:

- consists of $n m$ vertices divided into m subsets ($m=2$);
- edges are drown independently;
- intra class edges appear with probability $p=p_{n}$;
- inter class edges appear with probability $q=q_{n}$.

We are interesting in the scaling limit as $n \rightarrow \infty$ and $p_{n}, q_{n} \rightarrow 0$.

Largest Component of SBM

$C_{1}(n)$ - the largest component of the SBM

Largest Component of SBM

$C_{1}(n)$－the largest component of the SBM

It is well－known：

－If $p_{n}=q_{n}=\frac{a}{m n}$ ，then SBM is an Erdős－Rényi graph for which：
－for $a>1, C_{1}(n) \sim \Theta(n)$ ；
－for $a<1, C_{1}(n) \sim \Theta(\ln n)$ ；
（Erdős，Rényi＇60，＇61）
－for $a=1, C_{1}(n) \sim \Theta\left(n^{2 / 3}\right)$ ．

Largest Component of SBM

$C_{1}(n)$ - the largest component of the SBM

It is well-known:

- If $p_{n}=q_{n}=\frac{a}{m n}$, then SBM is an Erdős-Rényi graph for which:
- for $a>1, C_{1}(n) \sim \Theta(n)$;
- for $a<1, C_{1}(n) \sim \Theta(\ln n)$;
(Erdős, Rényi '60, '61)
- for $a=1, C_{1}(n) \sim \Theta\left(n^{2 / 3}\right)$.
- If $p_{n}=\frac{a}{m n}, q_{n}=\frac{b}{m n}$, then
- $a+(m-1) b>m, C_{1}(n) \sim \Theta(n) ;$
- $a+(m-1) b \leq m, C_{1}(n) \sim o(n)$.

Largest Component of SBM

$C_{1}(n)$ - the largest component of the SBM

It is well-known:

- If $p_{n}=q_{n}=\frac{a}{m n}$, then SBM is an Erdős-Rényi graph for which:
- for $a>1, C_{1}(n) \sim \Theta(n)$;
- for $a<1, C_{1}(n) \sim \Theta(\ln n)$;
(Erdős, Rényi '60, '61)
- for $a=1, C_{1}(n) \sim \Theta\left(n^{2 / 3}\right)$.
- If $p_{n}=\frac{a}{m n}, q_{n}=\frac{b}{m n}$, then
- $a+(m-1) b>m, C_{1}(n) \sim \Theta(n) ;$
- $a+(m-1) b \leq m, C_{1}(n) \sim o(n) . \quad$ (Bollobás, Janson, Riordan '07)

We are interesting in a novel critical regime: $q_{n} \ll p_{n} \sim \frac{a}{n}$.

Scaling limit of Erdős-Rényi Graphs

$G(n, p)$ - a Erdős-Rényi random graph with n vertices and edges appearing with prob. $p=p_{n}(t)=\frac{1}{n}+\frac{t}{n^{4 / 3}}$.
where $C_{k}(n, t)$ is the k-th largest component.

Scaling limit of Erdős-Rényi Graphs

$G(n, p)$ - a Erdős-Rényi random graph with n vertices and edges appearing with prob. $p=p_{n}(t)=\frac{1}{n}+\frac{t}{n^{4 / 3}}$.
$\operatorname{ER}_{n}(t):=\frac{1}{n^{2 / 3}}\left(C_{1}(n, t), C_{2}(n, t), \ldots, C_{k}(n, t), 0,0, \ldots \ldots\right)$, where $C_{k}(n, t)$ is the k-th largest component.

Scaling limit of Erdős－Rényi Graphs

$G(n, p)$－a Erdős－Rényi random graph with n vertices and edges appearing with prob．$p=p_{n}(t)=\frac{1}{n}+\frac{t}{n^{4 / 3}}$ ．
$\operatorname{ER}_{n}(t):=\frac{1}{n^{2 / 3}}\left(C_{1}(n, t), C_{2}(n, t), \ldots, C_{k}(n, t), 0,0, \ldots \ldots\right)$ ， where $C_{k}(n, t)$ is the k－th largest component．

Theorem．

For every $t \in \mathbb{R}$ the sequence $\operatorname{ER}_{n}(t)$ converges in l_{\downarrow}^{2} to $X^{*}(t)$ in distribu－ tion，where $X^{*}(t)$ is the ordered sequence of excursions of

$$
W(s)-\frac{1}{2} s^{2}+t s, \quad s \geq 0,
$$

above past minima．$X^{*}(t), t \in \mathbb{R}$ ，is called the standard Multiplicative coalescent，and is a Markov process in l_{\downarrow}^{2} ．

Interacting Multiplicative Coalescent and Main Result

$$
\operatorname{SBM}_{n}(t, s):=\frac{1}{n^{2 / 3}}\left(C_{1}(n, t), C_{2}(n, t), \ldots, C_{k}(n, t), 0,0\right), \quad t \in \mathbb{R}, \quad s \geq 0
$$ where $C_{k}(n, t)$ is the k－th largest component of SBM $G(n, p, q)$ with

$$
q=q_{n}(t)=\frac{s}{n^{4 / 3}}, \quad p=p_{n}(t)=\frac{1}{n}+\frac{t}{n^{4 / 3}}
$$

Interacting Multiplicative Coalescent and Main Result

$$
\operatorname{SBM}_{n}(t, s):=\frac{1}{n^{2 / 3}}\left(C_{1}(n, t), C_{2}(n, t), \ldots, C_{k}(n, t), 0,0\right), \quad t \in \mathbb{R}, \quad s \geq 0
$$

where $C_{k}(n, t)$ is the k-th largest component of SBM $G(n, p, q)$ with

$$
q=q_{n}(t)=\frac{s}{n^{4 / 3}}, \quad p=p_{n}(t)=\frac{1}{n}+\frac{t}{n^{4 / 3}} .
$$

For $s \geq 0$ and a fixed family of indep. r.v. $\xi_{i, j} \sim \operatorname{Exp}(1), i, j \geq 1$, define a random map $\mathrm{RMM}_{s}: l_{\downarrow}^{2} \times l_{\downarrow}^{2} \rightarrow l_{\downarrow}^{2}$:

- consider coord. of $x, y \in l_{\downarrow}^{2}$ as a masses of corresponding vertices of a graph;
- for every $i, j \geq 1$ draw an edge between x_{i} and y_{j} iff $\xi_{i, j} \leq s x_{i} y_{j}$;
- define $\mathrm{RMM}_{s}(x, y)$ as a vector of the ordered masses of connected components.

Interacting Multiplicative Coalescent and Main Result

$$
\operatorname{SBM}_{n}(t, s):=\frac{1}{n^{2 / 3}}\left(C_{1}(n, t), C_{2}(n, t), \ldots, C_{k}(n, t), 0,0\right), \quad t \in \mathbb{R}, \quad s \geq 0
$$

where $C_{k}(n, t)$ is the k-th largest component of SBM $G(n, p, q)$ with

$$
q=q_{n}(t)=\frac{s}{n^{4 / 3}}, \quad p=p_{n}(t)=\frac{1}{n}+\frac{t}{n^{4 / 3}} .
$$

For $s \geq 0$ and a fixed family of indep. r.v. $\xi_{i, j} \sim \operatorname{Exp}(1), i, j \geq 1$, define a random map $\mathrm{RMM}_{s}: l_{\downarrow}^{2} \times l_{\downarrow}^{2} \rightarrow l_{\downarrow}^{2}$:

- consider coord. of $x, y \in l_{\downarrow}^{2}$ as a masses of corresponding vertices of a graph;
- for every $i, j \geq 1$ draw an edge between x_{i} and y_{j} iff $\xi_{i, j} \leq s x_{i} y_{j}$;
- define $\mathrm{RMM}_{s}(x, y)$ as a vector of the ordered masses of connected components.

Theorem.

For every $t \in \mathbb{R}$ and $s \geq 0$ the process $\operatorname{SBM}_{n}(t, s)$ converges in l_{\downarrow}^{2} in distribution to $\mathrm{RMM}_{s}\left(X^{*}(t), Y^{*}(t)\right)$, where X^{*}, Y^{*} are independent standard multiplicative coalescents that are independent of ξ

Idea of Proof. ER_{n} and Multiplicative Coalescent

For $x \in l_{\downarrow}^{2}$, and independent $\xi_{i, j} \sim \operatorname{Exp}(1)$ define

$X^{x}(t)$ - ordered masses of connected componnents, $t \geq 0$.

Idea of Proof. ER_{n} and Multiplicative Coalescent

For $x \in l_{\downarrow}^{2}$, and independent $\xi_{i, j} \sim \operatorname{Exp}(1)$ define

$X^{x}(t)$ - ordered masses of connected componnents, $t \geq 0$.
The process $X^{x}(t), t \geq 0$, is a Markov process in l_{\downarrow}^{2} started from x. Moreover, it evolves according to the multiplicative coalescent dynamics:
each pair of blocks of mass a and b merges at rate $a b$ into a single block of mass $a+b$

Idea of Proof. ER_{n} and Multiplicative Coalescent

For $x \in l_{\downarrow}^{2}$, and independent $\xi_{i, j} \sim \operatorname{Exp}(1)$ define

$X^{x}(t)$ - ordered masses of connected componnents, $t \geq 0$.
The process $X^{x}(t), t \geq 0$, is a Markov process in l_{\downarrow}^{2} started from x. Moreover, it evolves according to the multiplicative coalescent dynamics:
each pair of blocks of mass a and b merges at rate $a b$ into a single block of mass $a+b$

Since for $x=\left(n^{-2 / 3}, \ldots, n^{-2 / 3}, 0,0, \ldots\right)$ and some $t_{n} \rightarrow t, n \rightarrow \infty$,

$$
\begin{aligned}
& p_{n}=\frac{1}{n}+\frac{t}{n^{4 / 3}}=1-e^{\left(t_{n}+n^{1 / 3}\right) n^{-2 / 3} n^{-2 / 3}}=\mathbb{P}\left\{\xi_{i, j} \leq\left(t_{n}+n^{1 / 3}\right) x_{i} x_{j}\right\} \\
& X^{x}\left(t_{n}+n^{1 / 3}\right) \stackrel{d}{=} \operatorname{ER}_{n}(t) \xrightarrow{d} X^{*}(t), \quad n \rightarrow \infty
\end{aligned}
$$

Idea of proof. A property of RMM

$x, y \in l_{\downarrow}^{2}$ and $\xi_{i, j}^{\prime}, \xi_{i, j}^{\prime \prime}, \xi_{i, j}^{\prime \prime \prime} \sim \operatorname{Exp}(1), i, j \geq 1$, are independent

Idea of proof. A property of RMM

$x, y \in l_{\downarrow}^{2}$ and $\xi_{i, j}^{\prime}, \xi_{i, j}^{\prime \prime}, \xi_{i, j}^{\prime \prime \prime} \sim \operatorname{Exp}(1), i, j \geq 1$, are independent

Idea of proof．A property of RMM

$x, y \in l_{\downarrow}^{2}$ and $\xi_{i, j}^{\prime}, \xi_{i, j}^{\prime \prime}, \xi_{i, j}^{\prime \prime \prime} \sim \operatorname{Exp}(1), i, j \geq 1$ ，are independent

Idea of proof. A property of RMM

$x, y \in l_{\downarrow}^{2}$ and $\xi_{i, j}^{\prime}, \xi_{i, j}^{\prime \prime}, \xi_{i, j}^{\prime \prime \prime} \sim \operatorname{Exp}(1), i, j \geq 1$, are independent

Idea of proof. A property of RMM

$x, y \in l_{\downarrow}^{2}$ and $\xi_{i, j}^{\prime}, \xi_{i, j}^{\prime \prime}, \xi_{i, j}^{\prime \prime \prime} \sim \operatorname{Exp}(1), i, j \geq 1$, are independent

$Z^{x, y}(t, s) \stackrel{d}{=} \operatorname{RMM}_{s}\left(X^{x}(t), Y^{y}(t)\right)$ for every $t \geq 0$ and $s \geq 0$.

Idea of proof. A property of RMM

$x, y \in l_{\downarrow}^{2}$ and $\xi_{i, j}^{\prime}, \xi_{i, j}^{\prime \prime}, \xi_{i, j}^{\prime \prime \prime} \sim \operatorname{Exp}(1), i, j \geq 1$, are independent

$Z^{x, y}(t, s) \stackrel{d}{=} \operatorname{RMM}_{s}\left(X^{x}(t), Y^{y}(t)\right)$ for every $t \geq 0$ and $s \geq 0$.

Idea of proof. SBM and RMM

Let $x=y=\left(n^{-2 / 3}, \ldots, n^{-2 / 3}, 0,0, \ldots\right)$. For some $t_{n} \rightarrow t, n \rightarrow \infty$,

$$
p_{n}=\frac{1}{n}+\frac{t}{n^{4 / 3}}=1-e^{\left(t_{n}+n^{1 / 3}\right) n^{-2 / 3} n^{-2 / 3}}=\mathbb{P}\left\{\xi_{i, j} \leq\left(t_{n}+n^{1 / 3}\right) x_{i} x_{j}\right\}
$$

Idea of proof. SBM and RMM

Let $x=y=\left(n^{-2 / 3}, \ldots, n^{-2 / 3}, 0,0, \ldots\right)$. For some $t_{n} \rightarrow t, n \rightarrow \infty$,

$$
p_{n}=\frac{1}{n}+\frac{t}{n^{4 / 3}}=1-e^{\left(t_{n}+n^{1 / 3}\right) n^{-2 / 3} n^{-2 / 3}}=\mathbb{P}\left\{\xi_{i, j} \leq\left(t_{n}+n^{1 / 3}\right) x_{i} x_{j}\right\}
$$

and for some $s_{n} \rightarrow s, n \rightarrow \infty$,

$$
q_{n}=\frac{s}{n^{4 / 3}}=1-e^{s_{n} n^{-2 / 3} n^{-2 / 3}}=\mathbb{P}\left\{\xi_{i, j} \leq s_{n} x_{i} y_{j}\right\}
$$

Idea of proof. SBM and RMM

Let $x=y=\left(n^{-2 / 3}, \ldots, n^{-2 / 3}, 0,0, \ldots\right)$. For some $t_{n} \rightarrow t, n \rightarrow \infty$,

$$
p_{n}=\frac{1}{n}+\frac{t}{n^{4 / 3}}=1-e^{\left(t_{n}+n^{1 / 3}\right) n^{-2 / 3} n^{-2 / 3}}=\mathbb{P}\left\{\xi_{i, j} \leq\left(t_{n}+n^{1 / 3}\right) x_{i} x_{j}\right\}
$$

and for some $s_{n} \rightarrow s, n \rightarrow \infty$,

$$
q_{n}=\frac{s}{n^{4 / 3}}=1-e^{s_{n} n^{-2 / 3} n^{-2 / 3}}=\mathbb{P}\left\{\xi_{i, j} \leq s_{n} x_{i} y_{j}\right\}
$$

Hence,

$$
\operatorname{SBM}_{n}(t, s) \stackrel{d}{=} Z^{x, y}\left(t_{n}+n^{1 / 3}, s_{n}\right)
$$

Idea of proof．SBM and RMM

Let $x=y=\left(n^{-2 / 3}, \ldots, n^{-2 / 3}, 0,0, \ldots\right)$ ．For some $t_{n} \rightarrow t, n \rightarrow \infty$ ，

$$
p_{n}=\frac{1}{n}+\frac{t}{n^{4 / 3}}=1-e^{\left(t_{n}+n^{1 / 3}\right) n^{-2 / 3} n^{-2 / 3}}=\mathbb{P}\left\{\xi_{i, j} \leq\left(t_{n}+n^{1 / 3}\right) x_{i} x_{j}\right\}
$$

and for some $s_{n} \rightarrow s, n \rightarrow \infty$ ，

$$
q_{n}=\frac{s}{n^{4 / 3}}=1-e^{s_{n} n^{-2 / 3} n^{-2 / 3}}=\mathbb{P}\left\{\xi_{i, j} \leq s_{n} x_{i} y_{j}\right\}
$$

Hence，

$$
\operatorname{SBM}_{n}(t, s) \stackrel{d}{=} Z^{x, y}\left(t_{n}+n^{1 / 3}, s_{n}\right) \stackrel{d}{=} \operatorname{RMM}_{s_{n}}\left(X^{x}\left(t_{n}+n^{1 / 3}\right), Y^{y}\left(t_{n}+n^{1 / 3}\right)\right)
$$

Idea of proof．Continuity of RMM

The convergence
$\operatorname{SBM}_{n}(t, s) \stackrel{d}{=} \operatorname{RMM}_{s_{n}}\left(X^{x}\left(t_{n}+n^{1 / 3}\right), Y^{y}\left(t_{n}+n^{1 / 3}\right)\right) \rightarrow \operatorname{RMM}_{s}\left(X^{*}(t), Y^{*}(t)\right)$,
follows from

$$
\left(\operatorname{ER}_{n}(t) \stackrel{d}{=}\right) X^{x}\left(t_{n}+n^{1 / 3}\right) \xrightarrow{d} X^{*}(t), \quad Y^{x}\left(t_{n}+n^{1 / 3}\right) \xrightarrow{d} Y^{*}(t), \quad n \rightarrow \infty
$$

Idea of proof. Continuity of RMM

The convergence
$\operatorname{SBM}_{n}(t, s) \stackrel{d}{=} \operatorname{RMM}_{s_{n}}\left(X^{x}\left(t_{n}+n^{1 / 3}\right), Y^{y}\left(t_{n}+n^{1 / 3}\right)\right) \rightarrow \operatorname{RMM}_{s}\left(X^{*}(t), Y^{*}(t)\right)$,
follows from

$$
\left(\operatorname{ER}_{n}(t) \stackrel{d}{=}\right) X^{x}\left(t_{n}+n^{1 / 3}\right) \xrightarrow{d} X^{*}(t), \quad Y^{x}\left(t_{n}+n^{1 / 3}\right) \xrightarrow{d} Y^{*}(t), \quad n \rightarrow \infty
$$

and

Proposition (K., Limic '20)

Let $x^{n} \rightarrow x, y^{n} \rightarrow y$ in l_{\downarrow}^{2} and $s_{n} \rightarrow s$ in $[0, \infty)$. Then
$\operatorname{RMM}_{s_{n}}\left(x_{n}, y_{n}\right) \rightarrow \operatorname{RMM}_{s}(x, y) \quad$ in l_{\downarrow}^{2} in probability
as $n \rightarrow \infty$.

References

國 V．Konarovskyi，V．Limic
Stochastic Block Model in a new critical regime and the Interacting Multiplicative Coalescent．
arXiv：2003．10958

Thank you for your attention！

