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Stochastic Block Model

Stochastic Block Model G(n, p, q) is a random graph such that:

consists of nm vertices divided into m subsets (m = 2);

edges are drown independently;

intra class edges appear with probability p = pn;

inter class edges appear with probability q = qn.

We are interesting in the scaling limit as n → ∞ and pn, qn → 0.
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Largest Component of SBM

C1(n) – the largest component of the SBM

It is well-known:

If pn = qn = a
mn , then SBM is an Erdős-Rényi graph for which:

for a > 1, C1(n) ∼ Θ(n);
for a < 1, C1(n) ∼ Θ(lnn); (Erdős, Rényi ’60, ’61)
for a = 1, C1(n) ∼ Θ(n2/3).

If pn = a
mn , qn = b

mn , then

a+ (m− 1)b > m, C1(n) ∼ Θ(n);
a+ (m− 1)b ≤ m, C1(n) ∼ o(n). (Bollobás, Janson, Riordan ’07)

We are interesting in a novel critical regime: qn ≪ pn ∼ a
n .
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Scaling limit of Erdős-Rényi Graphs

G(n, p) – a Erdős-Rényi random graph with n vertices and edges appearing with
prob. p = pn(t) =

1
n + t

n4/3 .

ERn(t) :=
1

n2/3 (C1(n, t), C2(n, t), . . . , Ck(n, t), 0, 0, . . . . . . ),
where Ck(n, t) is the k-th largest component.

Theorem. (Aldous ’97, Anmerdariz ’01, Limic ’98,’19)

For every t ∈ R the sequence ERn(t) converges in l2↓ to X∗(t) in distribu-
tion, where X∗(t) is the ordered sequence of excursions of

W (s)− 1

2
s2 + ts, s ≥ 0,

above past minima. X∗(t), t ∈ R, is called the standard Multiplicative
coalescent, and is a Markov process in l2↓.
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Interacting Multiplicative Coalescent and Main Result

SBMn(t, s) :=
1

n2/3
(C1(n, t), C2(n, t), . . . , Ck(n, t), 0, 0), t ∈ R, s ≥ 0,

where Ck(n, t) is the k-th largest component of SBM G(n, p, q) with

q = qn(t) =
s

n4/3
, p = pn(t) =

1

n
+

t

n4/3
.

For s ≥ 0 and a fixed family of indep. r.v. ξi,j ∼ Exp(1), i, j ≥ 1, define a
random map RMMs : l

2
↓ × l2↓ → l2↓:

consider coord. of x, y ∈ l2↓ as a masses of corresponding vertices of a graph;
for every i, j ≥ 1 draw an edge between xi and yj iff ξi,j ≤ sxiyj ;
define RMMs(x, y) as a vector of the ordered masses of connected
components.

Theorem. (K., Limic ’20)

For every t ∈ R and s ≥ 0 the process SBMn(t, s) converges in l2↓ in dis-
tribution to RMMs(X

∗(t), Y ∗(t)), where X∗, Y ∗ are independent standard
multiplicative coalescents that are independent of ξ
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Idea of Proof. ERn and Multiplicative Coalescent
For x ∈ l2↓, and independent ξi,j ∼ Exp(1) define

Xx(t) – ordered masses of connected componnents, t ≥ 0.

The process Xx(t), t ≥ 0, is a Markov process in l2↓ started from x. More-
over, it evolves according to the multiplicative coalescent dynamics:

each pair of blocks of mass a and b merges at rate ab

into a single block of mass a+ b

Since for x =
(
n−2/3, . . . , n−2/3, 0, 0, . . .

)
and some tn → t, n → ∞,

pn =
1

n
+

t

n4/3
= 1− e(tn+n1/3)n−2/3n−2/3

= P
{
ξi,j ≤ (tn + n1/3)xixj

}
Xx(tn + n1/3)

d
= ERn(t)

d→ X∗(t), n → ∞.
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Idea of proof. A property of RMM
x, y ∈ l2↓ and ξ′i,j , ξ

′′
i,j , ξ

′′′
i,j ∼ Exp(1), i, j ≥ 1, are independent

Zx,y(t, s)
d
= RMMs(X

x(t), Y y(t)) for every t ≥ 0 and s ≥ 0.
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Idea of proof. SBM and RMM

Let x = y =
(
n−2/3, . . . , n−2/3, 0, 0, . . .

)
. For some tn → t, n → ∞,

pn =
1

n
+

t

n4/3
= 1− e(tn+n1/3)n−2/3n−2/3

= P
{
ξi,j ≤ (tn + n1/3)xixj

}

and for some sn → s, n → ∞,

qn =
s

n4/3
= 1− esnn

−2/3n−2/3

= P {ξi,j ≤ snxiyj}

Hence,

SBMn(t, s)
d
= Zx,y(tn + n1/3, sn)

d
= RMMsn(X

x(tn + n1/3), Y y(tn + n1/3)).
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Idea of proof. Continuity of RMM

The convergence

SBMn(t, s)
d
= RMMsn(X

x(tn + n1/3), Y y(tn + n1/3)) → RMMs(X
∗(t), Y ∗(t)),

follows from(
ERn(t)

d
=
)

Xx(tn + n1/3)
d→ X∗(t), Y x(tn + n1/3)

d→ Y ∗(t), n → ∞

and

Proposition (K., Limic ’20)

Let xn → x, yn → y in l2↓ and sn → s in [0,∞). Then

RMMsn(xn, yn) → RMMs(x, y) in l2↓ in probability

as n → ∞.
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