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Stochastic Block Model

Stochastic Block Model G(n,p,q) is a random graph such that:
o consists of nm vertices divided into m subsets (m = 2);
o edges are drown independently;
o intra class edges appear with probability p = py;
o inter class edges appear with probability ¢ = ¢,,.
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Stochastic Block Model

Stochastic Block Model G(n,p,q) is a random graph such that
o consists of nm vertices divided into m subsets (m = 2);
o edges are drown independently;

o intra class edges appear with probability p = py;
o inter class edges appear with probability ¢ = ¢,,.
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We are interesting in the scaling limit as n — oo and p,, ¢, — 0.
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Largest Component of SBM

C4(n) — the largest component of the SBM
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Largest Component of SBM

C1(n) — the largest component of the SBM

It is well-known:
o If p, = gn = 5, then SBM is an Erdds-Rényi graph for which:
o fora > 1, Ci(n) ~ O(n);

o fora <1, Ci(n) ~ O(lnn);
o for a =1, Ci(n) ~ O(n*?).

(Erdds, Rényi '60, '61)
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Largest Component of SBM

C1(n) — the largest component of the SBM

It is well-known:
olfp,=gq,= # then SBM is an Erdés-Rényi graph for which:
o fora > 1, Ci(n) ~ O(n);

o fora <1, Ci(n) ~ O(lnn);
o for a =1, Ci(n) ~ O(n*?).

(Erdss, Rényi '60, '61)
o lfp, =2 g = %, then

o a+ (m—1)b>m, Ci(n) ~ O(n);
o a+(m—1)b <m, Ci(n) ~o(n).

(Bollobas, Janson, Riordan '07)
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Largest Component of SBM

C1(n) — the largest component of the SBM

It is well-known:

o If p, = gn = 5, then SBM is an Erdds-Rényi graph for which:
o for a > 1, Ci(n) ~ O(n);
o fora <1, Ci(n) ~ O(lnn); (Erdds, Rényi '60, '61)
o for a =1, Ci(n) ~ O(n*?).

o lfp, =2 g = %, then
o a+ (m—1)b>m, Ci(n) ~ O(n);
o a+(m—1)b <m, Ci(n) ~o(n).

(Bollobas, Janson, Riordan '07)

We are interesting in a novel critical regime: ¢, < p, ~ £
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Scaling limit of Erd6és-Rényi Graphs

G(n,p) — a Erd8s-Rényi random graph with n vertices and edges appearing with

prob. p = p, (1) =+ + .




Scaling limit of Erd6és-Rényi Graphs

G(n,p) — a Erd8s-Rényi random graph with n vertices and edges appearing with

prob. p = p, (1) =+ + .

ERn(t) = #(Cl (n, t), Cg(’/l, t), ey C’k(n, t), 0, 0, ...... ),
where Cj(n,t) is the k-th largest component.



Scaling limit of Erd6és-Rényi Graphs

G(n,p) — a Erd8s-Rényi random graph with n vertices and edges appearing with
prob. p = p,(t) = £ + —{7.

ER,(t) := =75 (Ci(n,t),Ca(n,t),...,Cr(n,t),0,0,...... ),
where Cj(n,t) is the k-th largest component.

For every t € R the sequence ER,,(¢) converges in lf to X*(t) in distribu-
tion, where X*(t) is the ordered sequence of excursions of

1
W(s) — 552 +ts, s>0,

above past minima. X*(¢), t € R, is called the standard Multiplicative
coalescent, and is a Markov process in lf.
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Interacting Multiplicative Coalescent and Main Result

1
SBM,,(t,s) := T/B(Cl(n,t),Cg(n,t),...,C’k(n,t),(),()), teR, s>0,
n

where Cj(n,t) is the k-th largest component of SBM G(n, p, ¢) with

s 1t
q:qn(t):m’ p:])n(t): ﬁ+7n4/3.



Interacting Multiplicative Coalescent and Main Result

1
SBM,,(t, s) := TB(Cl(n,t),Cg(n,t), oo, Ck(n,1),0,0), teR, s>0,
n
where Cj(n,t) is the k-th largest component of SBM G(n, p, ¢) with
s 1 t
q= %l(t) - TL4/3’ p= Pn(t) = ; + 7”4/3 .

For s > 0 and a fixed family of indep. r.v. & ; ~ Exp(1), ¢,j > 1, define a
random map RMMj : lf X lf — lf:
o consider coord. of x,y € li as a masses of corresponding vertices of a graph;
o for every i,j > 1 draw an edge between z; and y; iff & ; < sz;y;;
o define RMM;,(x,y) as a vector of the ordered masses of connected
components.



SBM, (¢, s) :

Interacting Multiplicative Coalescent and Main Result

n2/3

(C1(n,t),Ca(n,t),...,Ck(n,t),0,0),

t R,
where Cj(n,t) is the k-th largest component of SBM G(n, p, ¢) with
s
q= Qn(t) =

s >0,
oLt
= i p—%()-g"‘m-
For s > 0 and a fixed family of indep. r.v. & ; ~ Exp(1), ¢,j > 1, define a
random map RMM; : 17 x I} — I}

o consider coord. of x,y € lf as a masses of corresponding vertices of a graph;
o for every i,j > 1 draw an edge between x; and y; iff & ; < sx;y;;
i
components.

o define RMM;,(xz,y) as a vector of the ordered masses of connected

For every t € R and 5 > 0 the process SBM,(t, s) converges in [ in dis-

tribution to RMM (X ™*(¢), Y*(¢)), where X*, Y™ are independent standard
multiplicative coalescents that are independent of &

[m]




Idea of Proof. ER,, and Multiplicative Coalescent
For z € 17, and independent &; ; ~ Exp(1) define
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x, \9r/x, Xy X z, 2
X?*(t) — ordered masses of connected componnents, ¢ > 0.




Idea of Proof. ER,, and Multiplicative Coalescent
For z € 17, and independent &; ; ~ Exp(1) define

TN

I 5uss # Z. x5}
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x, \9r/x, Xy X z, 2
X?*(t) — ordered masses of connected componnents, ¢ > 0.

The process X*(t), t > 0, is a Markov process in lf started from x. More-
over, it evolves according to the multiplicative coalescent dynamics:

each pair of blocks of mass a and b merges at rate ab
into a single block of mass a + b




Idea of Proof. ER,, and Multiplicative Coalescent
For z € 17, and independent &; ; ~ Exp(1) define

TN

I 5uss # Z. x5}
e e e e e e @
x, \9r/x, Xy X z, 2
X?*(t) — ordered masses of connected componnents, ¢ > 0.

.

The process X*(t), t > 0, is a Markov process in lf started from x. More-
over, it evolves according to the multiplicative coalescent dynamics:

into a single block of mass a + b

each pair of blocks of mass a and b merges at rate ab
Since for z = (n

“2/3....,n72/3,0,0,...) and some t,, = t, n — o0,
1
Pn=0 Tt A

=1 — eltntnP 70720 _p {fm' < (tn + nl/?’)xixj}
X% (t, + 711/3)g ER, (t)i X*(t), n— o0
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Idea of proof. A property of RMM
z,y €17 and ¢
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Exp(1), 4,7 > 1, are independent
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Idea of proof. A property of RMM
z,y €17 and & 5,75, € ~ Exp(1), i,5 > 1, are independent
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Idea of proof. A property of RMM
z,y €1} and ¢
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Exp(1), 4,7 > 1, are independent
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Idea of proof. A property of RMM
z,y €1} and ¢

’” ~ Exp(1), 4,5 > 1, are independent

13 *zz:]
><(+)o

Z"tﬂa_[».

Sﬂ‘a
‘,]7/—\ s
Yi(+): o o

135 -‘f,y‘;:

o>



Idea of proof. A property of RMM
z,y €17 and & 5,75, € ~ Exp(1), i,5 > 1, are independent
{58tz z,r]
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Z:t,a({_ls): Ss, 5&‘“& /71
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N
135 < éJr]c]
Z"Y(t,s) 4 RMM, (X7 (t),Y¥(t)) for every t >0 and s > 0
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Idea of proof. A property of RMM
z,y €17 and ¢

~ Exp(1), 4,5 > 1, are independent
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Idea of proof. SBM and RMM
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Idea of proof. SBM and RMM
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Idea of proof. SBM and RMM
{55 s ékz:]
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Pn=t 0 = 1—e

and for some s,, — s, n —
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Hence
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Idea of proof. SBM and RMM
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Idea of proof. Continuity of RMM

The convergence

SBM,, (£, 5) £ RMM,, (X (tn +n'/3), Y¥(t, +n'/3)) — RMM,(X*(t), Y*(t)),
follows from

(ER,n(t) A

)Xw(tn+n1/3)i>x*(t), Yot + 013 S YH(t), n— oo
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Idea of proof. Continuity of RMM

The convergence

SBM,, (t, 5) £ RMM,, (X (tn +n'/3), Y¥(t, +n'/3)) — RMM,(X*(t), Y*(1)),
follows from

Proposition

Let 2" — x, y" — y in I} and s, — s in [0,00). Then

RMM;, (zn, yn) = RMM;(z,y) in lf in probability
as n — 00.
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