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Simple observation

Observation: Let W1,W2 be independent standard Brownian motions on R.

P {W1 ∈ A|W1 = W2} = P
{
W1 +W2

2
∈ A

∣∣∣∣W1 −W2

2
= 0

}
= P

{
W1 +W2

2
∈ A

}
The conditional distribution of the standard Brownian motion W1 to the event
{W1 = W2} is the distribution of Brownian motion with diffusion rate 1

2

Goal: Find the conditional distribution

P {X ∈ ·|X ∈ Coal} ,

where Coal is the set of coalescing paths and

1 X(t) = (W1(t), . . . ,Wn(t)), t ≥ 0, and Wk are independent Brownian motions;

2 X(u, t) = u+Wt(u), u ∈ [0, 1], t ≥ 0, and W is a cylindrical Wiener process in
L2 := L2[0, 1].
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Our guess

The conditional distribution of a family of independent Brownian motions to the event of
coalescing paths is the modified massive Arratia flow:

1 particles move independently and coalesce after meeting;

2 each particle has a mass that obeys the conservation law;

3 diffusion rate of each particle is inversely proportional to its mass.

We will justify our guess for finite and infinite dimensional cases. However, the infinite
dimensional case will be much more complicated.
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Definition of conditional probability

Let E be a Polish space, X be a random element in E and C ⊂ E.

How can we define P {X ∈ ·|X ∈ C} if P {X ∈ C} = 0?

Let T : E→ F satisfying T−1({z0}) = C. Then we will define

P {X ∈ ·|X ∈ C} = P {X ∈ ·|T(X) = z0} := p(·, z0),

where p is the regular conditional probability of X given T(X), i.e

1 for every z ∈ F, p(·, z) is probab. measure on E;

2 for every A ∈ B(E), z 7→ p(A, z) is measurable;

3 for every A ∈ B(E) and B ∈ B(F),

P {X ∈ A, T(X) ∈ B} =

∫
B

p(A, z) PT(X)(dz).

Remark: If p′ is other regular conditional probability of X given T (X), then

p′(·, z) = p(·, z)

for PT(X)-a.a. z.

If z 7→ p(·, z) is continuous at z0, then P {X ∈ ·|T(X) = z0} is well-defined.
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Main result: Finite dimensional case

Theorem. (K., Marx ’20)

Let X = (W1, . . . ,Wn), where Wk are independent Brownian motions with diffu-
sion rates σ2

k (with masses mk = 1
σ2
k

; assume: m1 + · · ·+mn = 1) starting from

x01 < · · · < x0n, and

Coal =

{
(xk)nk=1 ∈ C[0,∞)n :

∀k, l ∈ [n], ∀s ≥ 0, xk(s) = xl(s)
implies xk(t) = xl(t), ∀t ≥ s

}
.

Then ∃ T : C[0,∞)n → C0[0,∞)n−1 such that T−1({0}) = Coal and

P {X ∈ ·|X ∈ Coal} = P {X ∈ ·|T(X) = 0}

is the distribution of the modified massive Arratia flow Y = (Y1, . . . , Yn), that is,

1 Yk are continuous square-integrable martingales;

2 Yk(0) = x0k;

3 for k < l , Yk(t) ≤ Yl(t);

4 〈Yk, Yl〉t =
∫ t
0

I{Yk(s)=Yl(s)}
mk(s)

ds, where mk(t) =
∑
l∈[n]: Yk(t)=Yl(t)

ml;



Example: Two particle system

Let m1 = m2 = 1
2

. Then

T(x1, x2)(t) =

{
x2(τ+t)−x1(τ+t)

2
, if τ <∞,

0, if τ =∞,
t ≥ 0,

where τ = inf {t ≥ 0 : x1(t) = x2(t)}.

and T−1({0}) = Coal.

In general, T(x1, . . . , xn) defines “the difference between coordinate functions xk after
their meeting”
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Construction of regular conditional probability

Let X be a random element in E and T : E→ F is a measurable map.

Assume that there exists a quadruple (G,Ψ, Y, Z) satisfying

(P1) G is a measurable space;

(P2) Y and Z are independent random elements in G and F, respectively;

(P3) Ψ : G× F→ E is measurable and X
d
= Ψ(Y,Z);

(P4) T(Ψ(Y,Z)) = Z a.s.

Proposition

Let (G,Ψ, Y, Z) satisfy (P1)-(P4). Then

P {X ∈ ·|T(X) = z} = p(·, z) = P {Ψ(Y, z) ∈ ·}, z ∈ F,

is a regular conditional probability of X given T(X).

Proof. P {X ∈ A, T(X) ∈ B}
(P3)

= P {Ψ(Y, Z) ∈ A, T(Ψ(Y, Z)) ∈ B}

(P4)
= P {Ψ(Y, Z) ∈ A, Z ∈ B}

(P2)
=

∫
B

P {Ψ(Y, z) ∈ A} PZ (dz)
(P4)

=

∫
B

P {Ψ(Y, z) ∈ A} PT (X)
(dz)
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Conditional probability: Two particle case

X = (W1,W2), where Wk are indep. BM with diff rates 1
mk

= 2 starting from x0k.

E = C[0,∞)2, F = C0[0,∞) and T : E→ F

T(X)(t) = T(W1,W2)(t) =

{
W2(τ+t)−W1(τ+t)

2
, τ <∞,

0, τ =∞,

where τ = inf {t ≥ 0 : W1(t) = W2(t)}.
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Two particle system: Regular conditional distribution

X
d
= Ψ(Y,Z); Y |= Z; T(Ψ(Y,Z)) = Z a.s. =⇒ p(·, z) = Law Ψ(Y, z)

1 Coalescing part Y of X is a strong solution to the equation
dY1(t) = I{t<τ}dW1(t) + I{t≥τ}d

W1(t)+W2(t)
2

,

dY2(t) = I{t<τ}dW2(t) + I{t≥τ}d
W1(t)+W2(t)

2
,

Y1(0) = x01, Y2(0) = x02,

2 Ψ(Y, Z)(t) =
(
Y1(t)− Z(t− τ)I{t≥τ}, Y2(t) + Z(t− τ)I{t≥τ}

)
,

Z is a standard BM indep. of Y
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Two particle system: Continuity

p(·, z) = P {X ∈ ·|T (X) = z} = P {Ψ(Y, z) ∈ ·} for PZ-a.a. z

Since z 7→ Ψ(Y, z) =
(
Y1(t)− z(t− τY )I{t≥τY }, Y2(t) + z(t− τY )I{t≥τY }

)
is

continuous,

P {X ∈ ·|X ∈ Coal} = P {X ∈ ·|T (X) = 0} = P {Y ∈ ·} ,
where Y is the coalescing part of X:

dY1(t) = I{t<τ}dW1(t) + I{t≥τ}dW1(t)+W2(t)
2

,

dY2(t) = I{t<τ}dW2(t) + I{t≥τ}dW1(t)+W2(t)
2

,

Y1(0) = x01, Y2(0) = x02,



Two particle system: Continuity

p(·, z) = P {X ∈ ·|T (X) = z} = P {Ψ(Y, z) ∈ ·} for PZ-a.a. z

Since z 7→ Ψ(Y, z) =
(
Y1(t)− z(t− τY )I{t≥τY }, Y2(t) + z(t− τY )I{t≥τY }

)
is

continuous,

P {X ∈ ·|X ∈ Coal} = P {X ∈ ·|T (X) = 0} = P {Y ∈ ·} ,
where Y is the coalescing part of X:

dY1(t) = I{t<τ}dW1(t) + I{t≥τ}dW1(t)+W2(t)
2

,

dY2(t) = I{t<τ}dW2(t) + I{t≥τ}dW1(t)+W2(t)
2

,

Y1(0) = x01, Y2(0) = x02,



Finite number of particles: Coalescing part

Let X = W = (W1, . . . ,Wn), be independent independent Brownian particles with
masses mk, m1 + · · ·+mn = 1, starting from x01 < · · · < x0n.

Inner product on Rn: 〈x, y〉m =
∑n
k=1 xkykmk and denote prmx the orthogonal

projection onto Rn(x) := {y : yk = yl if xk = xl}.
〈W,a〉m is a Brownian motion with diffusion rate ‖a‖2m
Coalescing part of X:

Y (t) = x0 +

∫ t

0

prmY (s) dW (s), Y1(t) ≤ · · · ≤ Yn(t), t ≥ 0

The equation has a unique strong solution

Lemma (Splitting part of X)

Let B be an independent copy of W . Then

W̃ (t) := Y (t) +

∫ t

0

(prmY (s))
⊥dB(s)

has the same distribution as W .

〈W̃ , a〉m is a continuous martingale with quadratic variation
[
〈W̃ , a〉m

]
t

=
∫ t
0 ‖ prm

Y (s)
a‖2ds +

∫ t
0 ‖(prm

Y (s)
)⊥a‖2ds = ‖a‖2t.
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Basis generated by coalescing part

Let Y be the coalescing part of W :

Y (t) = x0 +

∫ t

0

prmY (s) dW (s), Y1(t) ≤ · · · ≤ Yn(t), t ≥ 0.

Define the stopping times τYk and basis eYk , k = 0, . . . , n− 1 as follows:

eYk is a unit vector in Rn(Y (τYk+1))	 Rn(Y (τYk )).
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Maps Ψ and T

Map Ψ:

W̃ (t) = Y (t)+

∫ t

0

(prmY (s))
⊥dB(s) = Y (t)+

n−1∑
k=1

I{t≥τYk }e
Y
k

(
〈B(t), eYk 〉m − 〈B(τYk ), eYk 〉m

)

d
= Y (t) +

n−1∑
k=1

I{t≥τYk }e
Y
k Zk(t− τYk )

for Zk, k = [n− 1], standard independent BM independent of Y .

Map T:

T(W )(t) :=
(
〈W (t+ τYl ), eYl 〉m

)
l=1,...,n−1

Conditional distribution:

Then X = W
d
= Ψ(Y,Z), T (Ψ(Y,Z)) = Z a.s., T−1({0}) = Coal,

z 7→ Ψ(Y, z) is continuous.

Hence,
P {X ∈ ·|X ∈ Coal} = P {X ∈ ·|T(X) = 0} = P {Y ∈ ·}
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Infinite particle system

Xt(u) = u+Wt(u), u ∈ [0, 1], t ≥ 0,

is a cylindrical Wiener process in L2 = L2[0, 1].



Disintegration of cylindrical Wiener process

Let Xt(u) = u+Wt(u), u ∈ [0, 1], t ≥ 0, be a cylindrical Wiener process in L2.

Coalescing part:

Yt = id +

∫ t

0

prYs
dWs, Yt ∈ L↑2 := {g ∈ L2 : g ↑}, (1)

where id(u) = u, u ∈ [0, 1], and prg is the orthogonal projection onto subspace of
σ(g)-measurable functions in L2.

Map Ψ:

Ψ(Y,Z)(t) = Y (t) +

∞∑
k=1

I{t≥τYk }e
Y
k Zk(t− τYk )

Construction problems:

1 X does not take values in L2;

2 Equation (1) admits weak solutions, not necessarily unique;

3 z 7→ Ψ(Y, z) is not continuous, so we cannot take a value of the regular conditional
probability at a fixed point.
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Value of regular conditional probability along a sequence

Let X be a random element in a Polish space E and T : E→ F.

Let p be a regular conditional probability of X given T(X).

Consider random elements {ξn, n ≥ 1} in a metric space F such that

(B1) Pξ
n

� PT(X) for all n ≥ 1,

(B2) ξn
d→ z0 in F.

A probability measure ν on E is the value at z0 of the regular conditional probability
p along {ξn} if for every f ∈ Cb(E)

E
∫
E

f(x)p(dx, ξn)→
∫
E

f(x)ν(dx), n→∞.

The measure ν represents the conditional distribution P {X ∈ ·|T(X) = z0}.

Lemma

Let z0 ∈ suppPT (X). ∃ ν which is the value at z0 of p along any sequence {ξn}
iff p has a version continuous at z0. In this case, ν is its value at z0.
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Approximation and value along a sequence

Let C be a closed set in E. One usually defines

P {X ∈ · |X ∈ C} = lim
ε→0

P {X ∈ · |X ∈ Cε} ,

where Cε = {x ∈ E : dE(C, x) < ε}.

Take
T(x) := dE(C, x), x ∈ E,

and note that T−1({0}) = C.

Set ξ := T (X) and define random elements ξε by

P {ξε ∈ A} =
1

P {ξ < ε}

∫
A

I{x<ε}Pξ(dx) = P {ξ ∈ A|X ∈ Cε}, A ∈ B(E).

Then {ξε, ε > 0}, satisfies (B1), (B2) with z0 = 0 and

E
∫
E

f(x)p(dx, ξε) =
Ef(X)I{ξ<ε}
P {ξ < ε} =

Ef(X)I{X∈Cε}

P {X ∈ Cε}

=

∫
E

f(x)P {X ∈ dx|X ∈ Cε} ,

where p is the regular conditional probability of X given ξ.
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Then {ξε, ε > 0}, satisfies (B1), (B2) with z0 = 0 and

E
∫
E

f(x)p(dx, ξε) =
Ef(X)I{ξ<ε}
P {ξ < ε} =

Ef(X)I{X∈Cε}

P {X ∈ Cε}

=

∫
E

f(x)P {X ∈ dx|X ∈ Cε} ,

where p is the regular conditional probability of X given ξ.



Approximation and value along a sequence
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Coalescing part and state space

There exists a continuous process Y in L2 and a cylindrical Wiener process W such that

Yt = id +

∫ t

0

prYs
dWs, Yt ∈ L↑2, t ≥ 0.

The process Y has a modification {Yt(u), u ∈ [0, 1], t ≥ 0} such that

1 Y (u) is a continuous square-integrable martingale;

2 Y0(u) = u;

3 for u < v, Yt(u) ≤ Yt(v);

4 〈Y (u), Y (v)〉t =
∫ t
0

I{Ys(u)=Ys(v)}
m(u,s)

ds, where m(u, s) = Leb {v : Ys(v) = Ys(u)}.

Take X := (Y,W ) and find the conditional distrib. to the event of coal. paths for W .
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State space

Let hj , j ≥ 0, be a fixed orthonormal basis in L2 with h0 = 1.

Set E := C ([0,∞), L2)× C ([0,∞),R)Z+ and identify

W =

∞∑
j=0

hj〈W,hj〉 ←→ Ŵ = (〈W,hj〉)j≥0 ∈ C ([0,∞),R)Z+

Define as before · · · < τn < · · · < τ1 <∞ and eYk , k ≥ 0.

Tt(X) = Tt(Y,W ) =

∞∑
k=1

eYk 〈Wt+τY
k
, eYk 〉, t ≥ 0,

is cylindrical Wiener process in L0
2 = L2 	 {constant functions}.

Ψt(Y,Z) =

(
Yt, Yt +

∞∑
k=1

eYk I{t≥τYk }〈Zt−τYk , e
Y
k 〉

)
, t ≥ 0,

where Z is a cylindrical Wiener process in L0
2, identified with

Z =

∞∑
j=1

hj〈Z, hj〉 ←→ Ẑ = (〈Z, hj〉)j≥1 ∈ C ([0,∞),R)N =: F.
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Main result: Infinite dimensional case

Theorem (K., Marx)

The law of (Y, Ŷ ) is the value at 0 of the regular conditional probability of X
given ξ := T (X) along the sequence {ξn}n≥1, where{

dξnj (t) = −αnj I{t≤n}ξnj (t)dt+ dξ̂j(t),

ξnj (0) = 0,

where {αnj , n, j ≥ 1} is a family of non-negative real numbers such that

(O1) for every n ≥ 1 the series
∑∞
j=1(αnj )2 < +∞;

(O2) for every j ≥ 1, αnj → +∞ as n→∞.
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