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Simple observation
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The conditional distribution of the standard Brownian motion Wj to the event

{W1 = Wa} is the distribution of Brownian motion with diffusion rate
Goal: Find the conditional distribution

2

P{X € |X € Coal},
where Coal is the set of coalescing paths and

Ly = L]0, 1].

@ X(t) = (Wi(t),...,Wxr(t)), t >0, and W} are independent Brownian motions;
@ X(u,t) =u+ Wy(u), u€[0,1], t >0, and W is a cylindrical Wiener process in
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Our guess

The conditional distribution of a family of independent Brownian motions to the event of
coalescing paths is the modified massive Arratia flow:

@ particles move independently and coalesce after meeting;
@ each particle has a mass that obeys the conservation law;

@ diffusion rate of each particle is inversely proportional to its mass.
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Our guess

The conditional distribution of a family of independent Brownian motions to the event of
coalescing paths is the modified massive Arratia flow:

@ particles move independently and coalesce after meeting;
@ each particle has a mass that obeys the conservation law;
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We will justify our guess for finite and infinite dimensional cases. However, the infinite
dimensional case will be much more complicated.



Definition of conditional probability

Let E be a Polish space, X be a random element in E and C C E.
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Definition of conditional probability

Let E be a Polish space, X be a random element in E and C C E.
How can we define P{X € -| X € C} if P{X € C} =07
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Let T: E — F satisfying T~ ' ({20}) = C. Then we will define
P{X €|X € C} =P{X € -|T(X) = z0} := p(, 20),

where p is the regular conditional probability of X given T(X), i.e
@ for every z € F, p(-, 2) is probab. measure on E;
@ for every A € B(E), z — p(A, z) is measurable;
@ for every A € B(E) and B € B(F),

P{X € A, T(X) € B} = / p(A, z) PTX)(dz).
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Definition of conditional probability

Let E be a Polish space, X be a random element in E and C C E.
How can we define P{X € -| X € C} if P{X € C} =07
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Let T: E — F satisfying T~ ' ({20}) = C. Then we will define
P{X €|X € C} =P{X € -|T(X) = z0} := p(, 20),

where p is the regular conditional probability of X given T(X), i.e
@ for every z € F, p(-, 2) is probab. measure on E;
@ for every A € B(E), z — p(A, z) is measurable;
@ for every A € B(E) and B € B(F),

P{X € A, T(X) € B} = / p(A, z) PTX)(dz).

Remark: If p’ is other regular conditional probability of X given T'(X), then
pl('7 Z) = p('7 Z)

for PTX)_aa. 2.

If z +— p(-, z) is continuous at zo, then P{X € -|T(X) = zo} is well-defined.
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Main result: Finite dimensional case

Let X = (Wi,...,W,), where W}, are independent Brownian motions with diffu-
sion rates o (with masses my = 0%; assume: mi + - - - +m, = 1) starting from
k

2) < <%, and

Coal — {(xk)2=1 € C[0,00)" : VEk,l € [n], Vs >0, xzx(s) = x1(s) } .

implies zy (t) = z;(t), Vt > s
Then 3 T : C[0,00)™ — Co[0,00)™ " such that T~*({0}) = Coal and
P{X €|X € Coal} = P{X € -|T(X) = 0}

is the distribution of the modified massive Arratia flow Y = (Y1,...,Y,), that is,

@ Y} are continuous square-integrable martingales;
@ Yi(0) = z};
Q@ fork <1, Yi(t) <Yi(t);

@ (Yo,Vi), = [y Mds, where mi(t) = X 1c . vi(y=vi ey T

my (s)

[m] = = =



Example: Two particle system

Let my = ma = 5. Then

xo(T+t)—x1 (T+1)
T(z1, 22)(t) = 0 : 7

if 7 < o0
where 7 =inf {¢t > 0: z1(t) = z2(t)}

. t>0,
if 7= o0,

and T~'({0}) = Coal.



Example: Two particle system

Let my = ma = 5. Then

w2(7+t)jw1(7+t)
T(z1, 22)(t) = 0 : 7

if ,
! T < 00, >0,
if 7= o0,
where 7 =inf {¢t > 0: z1(t) = z2(t)}
X, RN
p >
A
and T~'({0}) = Coal.
their meeting”

In general, T(x1,...,zy) defines “the difference between coordinate functions xj after



Construction of regular conditional probability

Let X be a random element in E and T : E — F is a measurable map.

7

Assume that there exists a quadruple (G, W, Y, Z) satisfying

(P1) G is a measurable space;

(P3) ¥: G x F — E is measurable and X < v(Y, Z);
(P4) T(V(Y,Z))=Z as.

(P2) Y and Z are independent random elements in G and F, respectively;
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(P2) Y and Z are independent random elements in G and F, respectively;

Let (G, V,Y, Z) satisfy (P1)-(P4). Then
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is a regular conditional probability of X given T(X).
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Let X be a random element in E and T : E — F is a measurable map.

Assume that there exists a quadruple (G, W, Y, Z) satisfying

(P1) G is a measurable space;

(P3) ¥: G x F — E is measurable and X < v(Y, Z);
(P4) T(V(Y,Z))=Z as.
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(P2) Y and Z are independent random elements in G and F, respectively;

Let (G, V,Y, Z) satisfy (P1)-(P4). Then
P{X € |T(X) = z} = p(-,2) = P{¥(Y,2) € -},

is a regular conditional probability of X given T(X).

z€eF,

Proof. P{X € A, T(X) € B} (£3) P{W(Y,Z) € A, T(¥(Y, Z)) € B}
(P4)

[m] =

P{U(Y,2Z) € 4, z e B} 22 /B PLU(Y, 2) € A}pZ (az) (EY /B P{u(Y,2) € A} pT(X) (az)
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Conditional probability: Two particle case

X = (W1, Ws), where Wy, are indep. BM with diff rates mik = 2 starting from z)

RS

W

w

gy VN

E = C[0,00)°, F = ([0, 0)

and T:E—F
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Conditional probability: Two particle case

X = (W1, Ws), where Wy, are indep. BM with diff rates mik = 2 starting from z)

T(w,w)+)

IV AR

E=C[0,00)°, F=0C[0,00) and T:E = F
T(X)(t) = T(Wi, W2)(t)

Wao (1+4+t)— Wi (T+t)
_ 2 )
0,
where 7 =inf {t > 0: Wi(t) = Wa(t)}.

T < 00,

T = 00,
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Two particle system: Regular conditional distribution

x< v(Y,Z);, YIZ, T(¥(Y,Z)=Zas. = p(,z)=Law ¥(Y,z2)
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Y1(0) = 5’3(1)7 Y2(0) = :I:37
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x< v(Y,Z);, YIZ, T(¥(Y,Z)=Zas. = p(,z)=Law ¥(Y,z2)

3

@ Coalescing part Y of X is a strong solution to the equation

dY1(t) = Iy dWa(t) + H{tz‘r}dwl(t);w2(t)7
dYa(t) = gy rydWa(t) + H{tZT}dW1(t);W2(t)’
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Two particle system: Regular conditional distribution
X 2wy, 2);

YIZ, T(¥Y,Z))=2Zas.

= p('a Z) =

Law ¥(Y, z)

By

@ Coalescing part Y of X is a strong solution to the equation

dY1(t) = [{1<rydW1 (t) + Ii>r }dWl (t)+W2(t)
dYs(t) = I[{t<7—}dW2(t) + > }dwl(t)+W2(t)
YI(O) - ‘T(l)7

Y>(0) = $2,
= Z(t) a.s. (for 7 < +00)

(YQ(T+t—T)+Z(T+t—T) Yi(r+t—7)+ Z(r+t—1)

)

=

@ T(¥(Y,2))(t)




Two particle system: Continuity

p(,2) =P{X € |T(X) =2} =P{U(Y,2) € -} for P”-aa.z




Two particle system: Continuity

p(-,Z) =

P{X € |T(

Since z — ¥(Y, 2)
continuous

P{X € -|X € Coal} =P{X € -|T(

)
)
=
D
3
X

g

where Y is the coalescing part of X

Y1 (t) = TrpcrydWi () + Loy d PHOFR20,
dYa(t) = Tery dWa(t) + I{pspyd Y2 OTW2(0
Y1(0) = a1,

Y2(O) = $g,

)=0}=P{Y €

.}7

(Yl()—z(t—r )H{tZTY},YQ(t)+Z(t—T )]I{t>Ty})

)=z} =P{¥(Y,z) €} forP-aa.z
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Finite number of particles: Coalescing part
Let X = W = (W,

,Wh), be independent independent Brownian particles with
masses my, mi + - - - + my, = 1, starting from 29 < - < 22,
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Let X =W = (Wy,...,W,), be independent independent Brownian particles with
masses my, mi + - - - + my, = 1, starting from 29 < - < 22,

Inner product on R™: (z,y),, = >_)'_, xryxms and denote pr’' the orthogonal
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(W, a)m is a Brownian motion with diffusion rate ||a||2,




Finite number of particles: Coalescing part

Let X = W = (Wh1,...,W,), be independent independent Brownian particles with
masses my, mi + - - - + my, = 1, starting from 29 < - < 22,

Inner product on R™: (z,y),, = >_)'_, xryxms and denote pr’' the orthogonal
projection onto R"(z) :={y: yx =y if z1 = x1}.
(W, @), is a Brownian motion with diffusion rate ||al|2,

Coalescing part of X:
t
Y(t) = z° +/ prgf(s) dW(s), Yi(t)<---<Yp(t), t>0
0
The equation has a unique strong solution
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Finite number of particles: Coalescing part

Let X = W = (Wh,...,W,), be independent independent Brownian particles with
masses my, mi + - - - + m, = 1, starting from ) << ad

m

Inner product on R™: (z,y),, = >_)'_, xryxms and denote pr’' the orthogonal

projection onto R™(z) :={y: yr =y if zp =z}
(W, @), is a Brownian motion with diffusion rate ||al|2,

Coalescing part of X:
t
Y(t) =2° +/ Py dW(s), Yi(t) <. <Yi(t), t>0
0

The equation has a unique strong solution

Lemma (Splitting part of X)

Let B be an independent copy of W. Then

WO =Y+ | (P dB(s)

has the same distribution as W.

. 7

(W, @) is a continuous martingale with quadratic variation [(W, a}nIL = fé I pry{,l(s) aH ds + fO H(pr”l S))J‘aH2d> = |la H t.

=) 5 = = T 9Dao



Basis generated by coalescing part
Let Y be the coalescing part of W:

t
Y(t)::c0+/ priyy dW(s), Yi(t) <--- <VY(t), t>0
0




Basis generated by coalescing part

Let Y be the coalescing part of W:
t
Y(t) = 2° +/ P, AW (), Yi(t) <o < (), t>0.
0

Define the stopping times 7} and basis ¢}, k =0,...,n — 1 as follows:

n=v

|
0
i
}
1
i

g

[m] = = = = o>



Basis generated by coalescing part

Let Y be the coalescing part of W:
t
Y(t) = 2° +/ P, AW (), Yi(t) <o < (), t>0.
0

Define the stopping times 7} and basis ¢}, k =0,...,n — 1 as follows:

n=v

I
i
i
)
i
i
r

Ly i
o fa]

t

! i
: - [
‘l RAw) )

y )] ;:{5‘21'17"(73; R aaA
I;CMHF " 1:43:3,133 ;




Basis generated by coalescing part

Let Y be the coalescing part of W:

t

Y(t) = a° +/ priyy dW(s), Yi(t) <--- <VY(t), t>0
0

Define the stopping times 7 and basis e} , k =0, ...

,n — 1 as follows:
n=d :

RUY) E ®(Yew)
y } RLYE) ,: :‘5"3'7‘:‘7‘3‘7 :iJ’J':"JJ“g
u;(“((m): " :n:af‘ﬂ? i

: o
gY} = a,(0,4,0,0) - g{:at(v,w): ,[ eb=anlytyr)
Lty |
"J‘”;oa')”),E (o )!e'

.

= ai140)!
: !

a,z M3 - v =4 (009
SrRCTSl : \,

P

3T Tl !



Basis generated by coalescing part

Let Y be the coalescing part of W:

t

Y(t) = a° +/ priy o dW(s), Yi(t) <--- <Vi(t), t>0
0

Define the stopping times 7 and basis e} , k =0, ...

,n — 1 as follows:
n=d :

H i
) |

LOR(Yw)
| Dol g iyt
% v ) Apeeyd <y 7
. S TR L
Qo R : i
: ' Do
gY} = a,(0,4,0,0) - LI:“;('M‘)I ,[ eb=anlytyr)
C=hloy) !
"J‘”;oa')”)/ i !e::u,(l,t,go)'g
2 M : =4 (00,3
a, ﬁ: i ! 1 I)\,
|

ey is a unit vector in R™(Y (12,,)) © R*(Y(7)))



Maps ¥ and T

Map U:

W) = Y(t)+ / (r¥ ) dB(s) = Y0+ Ly yyel ((BO). el ) — (B().el))
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Maps ¥ and T
Map ¥:

w(

B =Y(t)+ / (e )) - dB

(5) = YO+ Lo rryek (B, el hm — (B, el )

n—1

n—1
4

YO + Y Lpnyyer Zelt = m0)

for Zy, k = [n — 1], standard independent BM independent of Y



Maps ¥ and T

Map ¥:

W(t) =

Y(t)+ ) Tpsoyyen Zu(t =m0 ) = (Y, 2)
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Maps ¥ and T

Map ¥:

W(t) =

n—1

Y(t)+ ) Tpsoyyen Zu(t =m0 ) = (Y, 2)

4

for Zy, k = [n — 1], standard independent BM independent of Y.

Map T:
TV = (WD)

Y(t)+/t(pr$(s))ld3(s) —y(+Y Lsmryek ((B®),el)m = (B(Y), el hm )
k=1



Maps ¥ and T

Map ¥:
W) = YO+ [ () dBG) = V(03 Tpsryel (B0l — (Bl )

n—1

Y(t)+ ) Tpsoyyen Zu(t =m0 ) = (Y, 2)

4

for Zy, k = [n — 1], standard independent BM independent of Y.

Map T:
TW)(@) = <<W(t +sz)-,6{>”1>1:11.‘.77171

Conditional distribution:
Then X = W < v(Y,Z), T(V(Y,Z2)) =Z as., Til({O}) = Coal,

z — ¥(Y, z) is continuous.
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Maps ¥ and T

Map ¥:

W(O) =Y (04 | (70) dB6) = YO+ Y 1o pyed (B0 = (B el )

n—1
Ly()+y. Loy yer Zu(t =) = U(Y, 2)
k=1
for Zy, k = [n — 1], standard independent BM independent of Y.
Map T:
D)) = (W) el )

Conditional distribution:

Then X =W £ W(Y, Z), T(V(Y, Z)) = Z a.s., T~'({0}) = Coal,
z — ¥(Y, z) is continuous.

Hence,

P{X € |X € Coal} =P{X € |T(X) =0} =P{Y € -}
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Infinite particle system

Xo(u) = u+Wi(u), wel0,1], t>0,

is a cylindrical Wiener process in Ly = L2|0, 1].



Disintegration of cylindrical Wiener process

Let X¢(u) = u+ Wi(u), u € [0,1], t > 0, be a cylindrical Wiener process in Ly.
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where id(u) = u, u € [0,1], and pr, is the orthogonal projection onto subspace of
o(g)-measurable functions in L.
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Disintegration of cylindrical Wiener process

Let X¢(u) = u+ Wi(u), u € [0,1], t > 0, be a cylindrical Wiener process in Ly.

Coalescing part:

t
Yeid+ [ pry dW, YieLhi={gcLas g1} (1)
0

where id(u) = u, u € [0,1], and pr, is the orthogonal projection onto subspace of
o(g)-measurable functions in L.

Map ¥:

W(Y,Z)(t) =Y (t) + iﬂ{tZTg}esz(t —0)
k=1

Construction problems:

@ X does not take values in Lo;
@ Equation (1) admits weak solutions, not necessarily unique;

@ z— ¥(Y,2) is not continuous, so we cannot take a value of the regular conditional
probability at a fixed point.
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Value of regular conditional probability along a sequence

Let X be a random element in a Polish space E and T': E — F.
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Value of regular conditional probability along a sequence
Let X be a random element in a Polish space Eand T: E — F

Let p be a regular conditional probability of X given T(X)
Consider random elements {&",
(B1) P¢" < PTX) foralln > 1

n > 1} in a metric space F such that
(B2) ¢" % 2 in F.

A probability measure v on E is the value at zp of the regular conditional probability
p along {£"} if for every f € Cy(E)
/ f(@)p(dz, &™) — / flz

n — oo

The measure v represents the conditional distribution P{X € :|T(X) = 20}




Value of regular conditional probability along a sequence
Let X be a random element in a Polish space E and T : E — F

Let p be a regular conditional probability of X given T(X)
Consider random elements {&",
(B1) P¢" < PTX) foralln > 1

n > 1} in a metric space F such that
(B2) ¢&" % 2 in F.

A probability measure v on E is the value at zg of the regular conditional probability
p along {£"} if for every f € Cy(E)

/f p(dx, &™) %/f n — 00

The measure v represents the conditional distribution P{X € -|T(X) = z0}.
Let zo € supp PT™). 3 v which is the value at zo of p along any sequence {£"}
iff p has a version continuous at zo. In this case, v is its value at zo.
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Approximation and value along a sequence
Let C be a closed set in E. One usually defines

P{X € |XeC}:1ir%P{Xe S 1X e C.},
e—
where C. = {z € E: dg(C,z) < e}.
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Let C be a closed set in E. One usually defines
P{Xe-|XeC}= 1ing)]P’{Xe S 1X e C.},
e—

where C. = {z € E: dg(C,z) < e}.
Take

T(z):=de(C,z), =z€E,
and note that T~ ({0}) = C.

Set £ := T'(X) and define random elements £° by
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Approximation and value along a sequence

Let C be a closed set in E. One usually defines
P{Xe-|XeC}= 1ing)]P’{Xe S 1X e C.},
E—r

where C. = {z € E: dg(C,z) < e}.

Take
T(z):=de(C,z), =z€E,
and note that T~ ({0}) = C.

Set £ := T'(X) and define random elements £° by
E _ 1 ¢ _
PIE €A} = prrery /A]I{KE}]P’ (dz) =P{¢ € AIX € C.}, A€ B(E).

Then {¢°, ¢ > 0}, satisfies (B1), (B2) with zo =0 and

. e o fEN Ef(X)]I{ <e} _ Ef(X)H{Xecs}
B[ flaw(dn,¢) = P - 2o es

_ / F@)P{X € dz|X € C.},

where p is the regular conditional probability of X given £.
] = =




Coalescing part and state space

There exists a continuous process Y in L2 and a cylindrical Wiener process W such that
t
Yt:idJr/ pry dW., Yi€ L], t>0.
0

The process Y has a modification {Y;(u), u € [0,1], ¢ > 0} such that
@ Y (u) is a continuous square-integrable martingale;
@ Yo(u) =u;
@ for u < v, Yi(u) < Yi(v);

@ (Y(u),Y(v), = gw%}swds, where m(u,s) = Leb{v : Yi(v) = Yi(u)}.
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Coalescing part and state space

There exists a continuous process Y in L2 and a cylindrical Wiener process W such that
t
Yt:idJr/ pry dW., Y:€eLl, t>0.
0

The process Y has a modification {Y;(u), u € [0,1], ¢ > 0} such that
@ Y (u) is a continuous square-integrable martingale;
@ Yo(u) =u;
@ for u < v, Yi(u) < Yi(v);
@ (Y(u),Y(@), = [ HYs(W=Ya()} jg where m(u,s) =Leb{v: Yi(v) =Yi(u)}.

—Jo m(u,s)
A
Y \
100 / \,
M \"N\f\ P
A /, MY N""M*M Ao
ors ) N W )
\1‘\ Tl
Y
050w

gy ™,
WNWW"W"‘\NW\V oA

A e i pt
00T A At w R
v N A W g
iy i

Take X := (Y, 1) and find the conditional distrib. to the event of coal. paths for .
[m] = = =




State space

Let hj, j > 0, be a fixed orthonormal basis in Ly with hg = 1.
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State space

Let hj, j > 0, be a fixed orthonormal basis in Ly with hg = 1.
Set B := (' ([0,00), L2) x C([0,00), R)** and identify
j=0
Define as before --- < 7, < --- < 71 < oo and e}, k > 0.
k
is cylindrical Wiener process in L3 = Ly ©

{

constant functions}.
\ij(Y7Z) - <K7}Q+ZGZH{,§>T;’}<ZﬁT}‘{~,Gk >)7 t>07
k=1

where Z is a cylindrical Wiener process in LY, identified with

Z:ihj(z,hj) > Z=((Z,h;));5, €C([0,00),R)" = F

=

W=S (W) s W= (Wihy)),e € O (0,00), B)*



Main result: Infinite dimensional case

The law of (Y, 17) is the value at 0 of the regular conditional probability of X
given & := T'(X) along the sequence {{"},,>1, where

6} (1) = o U<y & (1) + G 1),
&) =0,

(O1) for every n > 1 the series Z;’il(a?)z < +oo;

where {a, n,j > 1} is a family of non-negative real numbers such that
(02) for every j > 1, aj — 400 as n — oo.
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