Conditional Distribution of Independent Brownian Motions to Event of Coalescing Paths

Vitalii Konarovskyi ${ }^{*} \dagger$
＊Leipzig University
${ }^{\dagger}$ Institute of Mathematics of NAS of Ukraine

Malliavin Calculus and its Applications， 2020

joint work with Victor Marx

Simple observation

Observation: Let W_{1}, W_{2} be independent standard Brownian motions on \mathbb{R}.

$$
\begin{aligned}
\mathbb{P}\left\{W_{1} \in A \mid W_{1}=W_{2}\right\} & =\mathbb{P}\left\{\left.\frac{W_{1}+W_{2}}{2} \in A \right\rvert\, \frac{W_{1}-W_{2}}{2}=0\right\} \\
& =\mathbb{P}\left\{\frac{W_{1}+W_{2}}{2} \in A\right\}
\end{aligned}
$$

The conditional distribution of the standard Brownian motion W_{1} to the event $\left\{W_{1}=W_{2}\right\}$ is the distribution of Brownian motion with diffusion rate $\frac{1}{2}$

Goal: Find the conditional distribution
where Coal is the set of coalescing paths and

Simple observation

Observation: Let W_{1}, W_{2} be independent standard Brownian motions on \mathbb{R}.

$$
\begin{aligned}
\mathbb{P}\left\{W_{1} \in A \mid W_{1}=W_{2}\right\} & =\mathbb{P}\left\{\left.\frac{W_{1}+W_{2}}{2} \in A \right\rvert\, \frac{W_{1}-W_{2}}{2}=0\right\} \\
& =\mathbb{P}\left\{\frac{W_{1}+W_{2}}{2} \in A\right\}
\end{aligned}
$$

The conditional distribution of the standard Brownian motion W_{1} to the event $\left\{W_{1}=W_{2}\right\}$ is the distribution of Brownian motion with diffusion rate $\frac{1}{2}$

Goal: Find the conditional distribution

where Coal is the set of coalescing paths and

Simple observation

Observation：Let W_{1}, W_{2} be independent standard Brownian motions on \mathbb{R} ．

$$
\begin{aligned}
\mathbb{P}\left\{W_{1} \in A \mid W_{1}=W_{2}\right\} & =\mathbb{P}\left\{\left.\frac{W_{1}+W_{2}}{2} \in A \right\rvert\, \frac{W_{1}-W_{2}}{2}=0\right\} \\
& =\mathbb{P}\left\{\frac{W_{1}+W_{2}}{2} \in A\right\}
\end{aligned}
$$

The conditional distribution of the standard Brownian motion W_{1} to the event $\left\{W_{1}=W_{2}\right\}$ is the distribution of Brownian motion with diffusion rate $\frac{1}{2}$

Goal：Find the conditional distribution

$$
\mathbb{P}\{X \in \cdot \mid X \in \mathbf{C o a l}\}
$$

where Coal is the set of coalescing paths and

Simple observation

Observation: Let W_{1}, W_{2} be independent standard Brownian motions on \mathbb{R}.

$$
\begin{aligned}
\mathbb{P}\left\{W_{1} \in A \mid W_{1}=W_{2}\right\} & =\mathbb{P}\left\{\left.\frac{W_{1}+W_{2}}{2} \in A \right\rvert\, \frac{W_{1}-W_{2}}{2}=0\right\} \\
& =\mathbb{P}\left\{\frac{W_{1}+W_{2}}{2} \in A\right\}
\end{aligned}
$$

The conditional distribution of the standard Brownian motion W_{1} to the event $\left\{W_{1}=W_{2}\right\}$ is the distribution of Brownian motion with diffusion rate $\frac{1}{2}$

Goal: Find the conditional distribution

$$
\mathbb{P}\{X \in \cdot \mid X \in \mathbf{C o a l}\}
$$

where Coal is the set of coalescing paths and
(1) $X(t)=\left(W_{1}(t), \ldots, W_{n}(t)\right), t \geq 0$, and W_{k} are independent Brownian motions;

Simple observation

Observation: Let W_{1}, W_{2} be independent standard Brownian motions on \mathbb{R}.

$$
\begin{aligned}
\mathbb{P}\left\{W_{1} \in A \mid W_{1}=W_{2}\right\} & =\mathbb{P}\left\{\left.\frac{W_{1}+W_{2}}{2} \in A \right\rvert\, \frac{W_{1}-W_{2}}{2}=0\right\} \\
& =\mathbb{P}\left\{\frac{W_{1}+W_{2}}{2} \in A\right\}
\end{aligned}
$$

The conditional distribution of the standard Brownian motion W_{1} to the event $\left\{W_{1}=W_{2}\right\}$ is the distribution of Brownian motion with diffusion rate $\frac{1}{2}$

Goal: Find the conditional distribution

$$
\mathbb{P}\{X \in \cdot \mid X \in \mathbf{C o a l}\}
$$

where Coal is the set of coalescing paths and
(1) $X(t)=\left(W_{1}(t), \ldots, W_{n}(t)\right), t \geq 0$, and W_{k} are independent Brownian motions;
(2) $X(u, t)=u+W_{t}(u), u \in[0,1], t \geq 0$, and W is a cylindrical Wiener process in $L_{2}:=L_{2}[0,1]$.

Our guess

The conditional distribution of a family of independent Brownian motions to the event of coalescing paths is the modified massive Arratia flow:
(1) particles move independently and coalesce after meeting;
(2) each particle has a mass that obeys the conservation law;
(3) diffusion rate of each particle is inversely proportional to its mass.

Our guess

The conditional distribution of a family of independent Brownian motions to the event of coalescing paths is the modified massive Arratia flow:
(1) particles move independently and coalesce after meeting;
(2) each particle has a mass that obeys the conservation law;
(3) diffusion rate of each particle is inversely proportional to its mass.

We will justify our guess for finite and infinite dimensional cases. However, the infinite dimensional case will be much more complicated.

Definition of conditional probability

Let \mathbf{E} be a Polish space, X be a random element in \mathbf{E} and $C \subset \mathbf{E}$.

Remark: If p^{\prime} is other regular conditional probability of X given $T(X)$, then

Definition of conditional probability

Let \mathbf{E} be a Polish space, X be a random element in \mathbf{E} and $C \subset \mathbf{E}$.
How can we define $\mathbb{P}\{X \in \cdot \mid X \in C\}$ if $\mathbb{P}\{X \in C\}=0$?

Remark: If p^{\prime} is other regular conditional probability of X given $T(X)$, then

Definition of conditional probability

Let \mathbf{E} be a Polish space, X be a random element in \mathbf{E} and $C \subset \mathbf{E}$.
How can we define $\mathbb{P}\{X \in \cdot \mid X \in C\}$ if $\mathbb{P}\{X \in C\}=0$?
Let $\mathrm{T}: \mathbf{E} \rightarrow \mathbf{F}$ satisfying $\mathrm{T}^{-1}\left(\left\{z_{0}\right\}\right)=C$. Then we will define

$$
\mathbb{P}\{X \in \cdot \mid X \in C\}=\mathbb{P}\left\{X \in \cdot \mid \mathrm{T}(X)=z_{0}\right\}:=p\left(\cdot, z_{0}\right),
$$

where p is the regular conditional probability of X given $\mathrm{T}(X)$, i.e
(1) for every $z \in \mathbf{F}, p(\cdot, z)$ is probab. measure on \mathbf{E};
(2) for every $A \in \mathcal{B}(\mathbf{E}), z \mapsto p(A, z)$ is measurable;
(3) for every $A \in \mathcal{B}(\mathbf{E})$ and $B \in \mathcal{B}(\mathbf{F})$,

$$
\mathbb{P}\{X \in A, \mathrm{~T}(X) \in B\}=\int_{B} p(A, z) \mathbb{P}^{\mathrm{T}(X)}(\mathrm{d} z)
$$

Remark: If p^{\prime} is other regular conditional probability of X given $T(X)$, then

Definition of conditional probability

Let \mathbf{E} be a Polish space, X be a random element in \mathbf{E} and $C \subset \mathbf{E}$.
How can we define $\mathbb{P}\{X \in \cdot \mid X \in C\}$ if $\mathbb{P}\{X \in C\}=0$?
Let $\mathrm{T}: \mathbf{E} \rightarrow \mathbf{F}$ satisfying $\mathrm{T}^{-1}\left(\left\{z_{0}\right\}\right)=C$. Then we will define

$$
\mathbb{P}\{X \in \cdot \mid X \in C\}=\mathbb{P}\left\{X \in \cdot \mid \mathrm{T}(X)=z_{0}\right\}:=p\left(\cdot, z_{0}\right),
$$

where p is the regular conditional probability of X given $\mathrm{T}(X)$, i.e
(1) for every $z \in \mathbf{F}, p(\cdot, z)$ is probab. measure on \mathbf{E};
(2) for every $A \in \mathcal{B}(\mathbf{E}), z \mapsto p(A, z)$ is measurable;
(3) for every $A \in \mathcal{B}(\mathbf{E})$ and $B \in \mathcal{B}(\mathbf{F})$,

$$
\mathbb{P}\{X \in A, \mathrm{~T}(X) \in B\}=\int_{B} p(A, z) \mathbb{P}^{\mathrm{T}(X)}(\mathrm{d} z) .
$$

Remark: If p^{\prime} is other regular conditional probability of X given $T(X)$, then

$$
p^{\prime}(\cdot, z)=p(\cdot, z)
$$

for $\mathbb{P}^{\mathrm{T}(X)}$-a.a. z.

Definition of conditional probability

Let \mathbf{E} be a Polish space, X be a random element in \mathbf{E} and $C \subset \mathbf{E}$.
How can we define $\mathbb{P}\{X \in \cdot \mid X \in C\}$ if $\mathbb{P}\{X \in C\}=0$?
Let $\mathrm{T}: \mathbf{E} \rightarrow \mathbf{F}$ satisfying $\mathrm{T}^{-1}\left(\left\{z_{0}\right\}\right)=C$. Then we will define

$$
\mathbb{P}\{X \in \cdot \mid X \in C\}=\mathbb{P}\left\{X \in \cdot \mid \mathrm{T}(X)=z_{0}\right\}:=p\left(\cdot, z_{0}\right)
$$

where p is the regular conditional probability of X given $\mathrm{T}(X)$, i.e
(1) for every $z \in \mathbf{F}, p(\cdot, z)$ is probab. measure on \mathbf{E};
(2) for every $A \in \mathcal{B}(\mathbf{E}), z \mapsto p(A, z)$ is measurable;
(3) for every $A \in \mathcal{B}(\mathbf{E})$ and $B \in \mathcal{B}(\mathbf{F})$,

$$
\mathbb{P}\{X \in A, \mathrm{~T}(X) \in B\}=\int_{B} p(A, z) \mathbb{P}^{\mathrm{T}(X)}(\mathrm{d} z)
$$

Remark: If p^{\prime} is other regular conditional probability of X given $T(X)$, then

$$
p^{\prime}(\cdot, z)=p(\cdot, z)
$$

for $\mathbb{P}^{\mathrm{T}(X)}$-a.a. z.
If $z \mapsto p(\cdot, z)$ is continuous at z_{0}, then $\mathbb{P}\left\{X \in \cdot \mid \mathrm{T}(X)=z_{0}\right\}$ is well-defined.

Main result: Finite dimensional case

Theorem.

Let $X=\left(W_{1}, \ldots, W_{n}\right)$, where W_{k} are independent Brownian motions with diffusion rates σ_{k}^{2} (with masses $m_{k}=\frac{1}{\sigma_{k}^{2}}$; assume: $m_{1}+\cdots+m_{n}=1$) starting from $x_{1}^{0}<\cdots<x_{n}^{0}$, and

$$
\text { Coal }=\left\{\left(x_{k}\right)_{k=1}^{n} \in C[0, \infty)^{n}: \begin{array}{l}
\forall k, l \in[n], \forall s \geq 0, x_{k}(s)=x_{l}(s) \\
\text { implies } x_{k}(t)=x_{l}(t), \forall t \geq s
\end{array}\right\}
$$

Then $\exists \mathrm{T}: C[0, \infty)^{n} \rightarrow C_{0}[0, \infty)^{n-1}$ such that $\mathrm{T}^{-1}(\{0\})=$ Coal and

$$
\mathbb{P}\{X \in \cdot \mid X \in \mathbf{C o a l}\}=\mathbb{P}\{X \in \cdot \mid \mathrm{T}(X)=0\}
$$

is the distribution of the modified massive Arratia flow $Y=\left(Y_{1}, \ldots, Y_{n}\right)$, that is,
(1) Y_{k} are continuous square-integrable martingales;
(2) $Y_{k}(0)=x_{k}^{0}$;
(3) for $k<l, Y_{k}(t) \leq Y_{l}(t)$;
(4) $\left\langle Y_{k}, Y_{l}\right\rangle_{t}=\int_{0}^{t} \frac{\mathbb{I}_{\left\{Y_{k}(s)=Y_{l}(s)\right\}}^{m_{k}(s)}}{} d s$, where $m_{k}(t)=\sum_{l \in[n]: Y_{k}(t)=Y_{l}(t)} m_{l}$;

Example：Two particle system

Let $m_{1}=m_{2}=\frac{1}{2}$ ．Then

$$
\mathrm{T}\left(x_{1}, x_{2}\right)(t)= \begin{cases}\frac{x_{2}(\tau+t)-x_{1}(\tau+t)}{2}, & \text { if } \tau<\infty, \quad t \geq 0 \\ 0, & \text { if } \tau=\infty,\end{cases}
$$

where $\tau=\inf \left\{t \geq 0: x_{1}(t)=x_{2}(t)\right\}$.

and $\mathrm{T}^{-1}(\{0\})=$ Coal．
In general， $\mathrm{T}\left(x_{1}, \ldots, x_{n}\right)$ defines＂the difference between coordinate functions x_{k} after
their meeting＂

Example：Two particle system

Let $m_{1}=m_{2}=\frac{1}{2}$ ．Then

$$
\mathrm{T}\left(x_{1}, x_{2}\right)(t)= \begin{cases}\frac{x_{2}(\tau+t)-x_{1}(\tau+t)}{2}, & \text { if } \tau<\infty, \quad t \geq 0 \\ 0, & \text { if } \tau=\infty,\end{cases}
$$

where $\tau=\inf \left\{t \geq 0: x_{1}(t)=x_{2}(t)\right\}$.

and $\mathrm{T}^{-1}(\{0\})=$ Coal．
In general， $\mathrm{T}\left(x_{1}, \ldots, x_{n}\right)$ defines＂the difference between coordinate functions x_{k} after their meeting＂

Construction of regular conditional probability

Let X be a random element in \mathbf{E} and $\mathrm{T}: \mathbf{E} \rightarrow \mathbf{F}$ is a measurable map.
Assume that there exists a quadruple (\mathbf{G}, Ψ, Y, Z) satisfying
(P1) G is a measurable space;
(P2) Y and Z are independent random elements in \mathbf{G} and \mathbf{F}, respectively;
(P3) $\Psi: \mathbf{G} \times \mathbf{F} \rightarrow \mathbf{E}$ is measurable and $X \stackrel{d}{=} \Psi(Y, Z)$;
(P4) $\mathrm{T}(\Psi(Y, Z))=Z$ a.s.

Construction of regular conditional probability

Let X be a random element in \mathbf{E} and $\mathrm{T}: \mathbf{E} \rightarrow \mathbf{F}$ is a measurable map.
Assume that there exists a quadruple (\mathbf{G}, Ψ, Y, Z) satisfying
(P1) G is a measurable space;
(P2) Y and Z are independent random elements in \mathbf{G} and \mathbf{F}, respectively;
(P3) $\Psi: \mathbf{G} \times \mathbf{F} \rightarrow \mathbf{E}$ is measurable and $X \stackrel{d}{=} \Psi(Y, Z)$;
(P4) $\mathrm{T}(\Psi(Y, Z))=Z$ a.s.

Proposition

Let (\mathbf{G}, Ψ, Y, Z) satisfy (P1)-(P4). Then

$$
\mathbb{P}\{X \in \cdot \mid \mathrm{T}(X)=z\}=p(\cdot, z)=\mathbb{P}\{\Psi(Y, z) \in \cdot\}, \quad z \in \mathbf{F}
$$

is a regular conditional probability of X given $\mathrm{T}(X)$.

Construction of regular conditional probability

Let X be a random element in \mathbf{E} and $\mathrm{T}: \mathbf{E} \rightarrow \mathbf{F}$ is a measurable map.
Assume that there exists a quadruple (\mathbf{G}, Ψ, Y, Z) satisfying
(P1) \mathbf{G} is a measurable space;
(P2) Y and Z are independent random elements in \mathbf{G} and \mathbf{F}, respectively;
(P3) $\Psi: \mathbf{G} \times \mathbf{F} \rightarrow \mathbf{E}$ is measurable and $X \stackrel{d}{=} \Psi(Y, Z)$;
(P4) $\mathrm{T}(\Psi(Y, Z))=Z$ a.s.

Proposition

Let (\mathbf{G}, Ψ, Y, Z) satisfy (P1)-(P4). Then

$$
\mathbb{P}\{X \in \cdot \mid \mathrm{T}(X)=z\}=p(\cdot, z)=\mathbb{P}\{\Psi(Y, z) \in \cdot\}, \quad z \in \mathbf{F}
$$

is a regular conditional probability of X given $\mathrm{T}(X)$.

```
Proof. \(\mathbb{P}\{X \in A, \mathrm{~T}(X) \in B\} \stackrel{(P 3)}{=} \mathbb{P}\{\Psi(Y, Z) \in A, \mathrm{~T}(\Psi(Y, Z)) \in B\}\)
    \(\stackrel{(P 4)}{=} \mathbb{P}\{\Psi(Y, Z) \in A, Z \in B\} \stackrel{(P 2)}{=} \int_{B} \mathbb{P}\{\Psi(Y, z) \in A\} \mathbb{P}^{Z}(d z) \stackrel{(P 4)}{=} \int_{B} \mathbb{P}\{\Psi(Y, z) \in A\} \mathbb{P}^{T(X)}(d z)\)
```


Conditional probability：Two particle case

$X=\left(W_{1}, W_{2}\right)$ ，where W_{k} are indep．BM with diff rates $\frac{1}{m_{k}}=2$ starting from x_{k}^{0} ．

$$
\mathbf{E}=C[0, \infty)^{2}, \quad \mathbf{F}=C_{0}[0, \infty) \quad \text { and } \quad \mathrm{T}: \mathbf{E} \rightarrow \mathbf{F}
$$

Conditional probability: Two particle case

$X=\left(W_{1}, W_{2}\right)$, where W_{k} are indep. BM with diff rates $\frac{1}{m_{k}}=2$ starting from x_{k}^{0}.

$$
\begin{gathered}
\mathbf{E}=C[0, \infty)^{2}, \quad \mathbf{F}=C_{0}[0, \infty) \quad \text { and } \quad \mathrm{T}: \mathbf{E} \rightarrow \mathbf{F} \\
\mathrm{T}(X)(t)=\mathrm{T}\left(W_{1}, W_{2}\right)(t)= \begin{cases}\frac{W_{2}(\tau+t)-W_{1}(\tau+t)}{2}, & \tau<\infty, \\
0, & \tau=\infty\end{cases}
\end{gathered}
$$

where $\tau=\inf \left\{t \geq 0: W_{1}(t)=W_{2}(t)\right\}$.

Two particle system：Regular conditional distribution

$$
X \stackrel{d}{=} \Psi(Y, Z) ; \quad Y \Perp Z ; \quad \mathrm{T}(\Psi(Y, Z))=Z \text { a.s. } \quad \Longrightarrow p(\cdot, z)=\operatorname{Law} \Psi(Y, z)
$$

（1）Coalescing part Y of X is a strong solution to the equation

Two particle system: Regular conditional distribution

$$
X \stackrel{d}{=} \Psi(Y, Z) ; \quad Y \Perp Z ; \quad \mathrm{T}(\Psi(Y, Z))=Z \text { a.s. } \quad \Longrightarrow p(\cdot, z)=\operatorname{Law} \Psi(Y, z)
$$

(1) Coalescing part Y of X is a strong solution to the equation

$$
\left\{\begin{array}{l}
d Y_{1}(t)=\mathbb{I}_{\{t<\tau\}} d W_{1}(t)+\mathbb{I}_{\{t \geq \tau\}} d \frac{W_{1}(t)+W_{2}(t)}{2} \\
d Y_{2}(t)=\mathbb{I}_{\{t<\tau\}} d W_{2}(t)+\mathbb{I}_{\{t \geq \tau\}} d \frac{W_{1}(t)+W_{2}(t)}{2} \\
Y_{1}(0)=x_{1}^{0}, \quad Y_{2}(0)=x_{2}^{0}
\end{array}\right.
$$

Two particle system: Regular conditional distribution

$$
X \stackrel{d}{=} \Psi(Y, Z) ; \quad Y \Perp Z ; \quad \mathrm{T}(\Psi(Y, Z))=Z \text { a.s. } \quad \Longrightarrow p(\cdot, z)=\operatorname{Law} \Psi(Y, z)
$$

(1) Coalescing part Y of X is a strong solution to the equation

$$
\left\{\begin{array}{l}
d Y_{1}(t)=\mathbb{I}_{\{t<\tau\}} d W_{1}(t)+\mathbb{I}_{\{t \geq \tau\}} d \frac{W_{1}(t)+W_{2}(t)}{2} \\
d Y_{2}(t)=\mathbb{I}_{\{t<\tau\}} d W_{2}(t)+\mathbb{I}_{\{t \geq \tau\}} d \frac{W_{1}(t)+W_{2}(t)}{2} \\
Y_{1}(0)=x_{1}^{0}, \quad Y_{2}(0)=x_{2}^{0}
\end{array}\right.
$$

Two particle system：Regular conditional distribution

$$
X \stackrel{d}{=} \Psi(Y, Z) ; \quad Y \Perp Z ; \quad \mathrm{T}(\Psi(Y, Z))=Z \text { a.s. } \quad \Longrightarrow p(\cdot, z)=\operatorname{Law} \Psi(Y, z)
$$

（1）Coalescing part Y of X is a strong solution to the equation

$$
\left\{\begin{array}{l}
d Y_{1}(t)=\mathbb{I}_{\{t<\tau\}} d W_{1}(t)+\mathbb{I}_{\{t \geq \tau\}} d \frac{W_{1}(t)+W_{2}(t)}{2}, \\
d Y_{2}(t)=\mathbb{I}_{\{t<\tau\}} d W_{2}(t)+\mathbb{I}_{\{t \geq \tau\}} d \frac{W_{1}(t)+W_{2}(t)}{2}, \\
Y_{1}(0)=x_{1}^{0}, \quad Y_{2}(0)=x_{2}^{0}
\end{array}\right.
$$

（2）$\Psi(Y, Z)(t)=\left(Y_{1}(t)-Z(t-\tau) \mathbb{I}_{\{t \geq \tau\}}, Y_{2}(t)+Z(t-\tau) \mathbb{I}_{\{t \geq \tau\}}\right)$ ，
Z is a standard BM indep．of Y

Two particle system: Regular conditional distribution

$$
X \stackrel{d}{=} \Psi(Y, Z) ; \quad Y \Perp Z ; \quad \mathrm{T}(\Psi(Y, Z))=Z \text { a.s. } \quad \Longrightarrow p(\cdot, z)=\operatorname{Law} \Psi(Y, z)
$$

(1) Coalescing part Y of X is a strong solution to the equation

$$
\left\{\begin{array}{l}
d Y_{1}(t)=\mathbb{I}_{\{t<\tau\}} d W_{1}(t)+\mathbb{I}_{\{t \geq \tau\}} d \frac{W_{1}(t)+W_{2}(t)}{2} \\
d Y_{2}(t)=\mathbb{I}_{\{t<\tau\}} d W_{2}(t)+\mathbb{I}_{\{t \geq \tau\}} d \frac{W_{1}(t)+W_{2}(t)}{2} \\
Y_{1}(0)=x_{1}^{0}, \quad Y_{2}(0)=x_{2}^{0}
\end{array}\right.
$$

(2) $\Psi(Y, Z)(t)=\left(Y_{1}(t)-Z(t-\tau) \mathbb{I}_{\{t \geq \tau\}}, Y_{2}(t)+Z(t-\tau) \mathbb{I}_{\{t \geq \tau\}}\right)$,
Z is a standard BM indep. of Y

Two particle system: Regular conditional distribution

$$
X \stackrel{d}{=} \Psi(Y, Z) ; \quad Y \Perp Z ; \quad \mathrm{T}(\Psi(Y, Z))=Z \text { a.s. } \quad \Longrightarrow p(\cdot, z)=\operatorname{Law} \Psi(Y, z)
$$

(1) Coalescing part Y of X is a strong solution to the equation

$$
\left\{\begin{array}{l}
d Y_{1}(t)=\mathbb{I}_{\{t<\tau\}} d W_{1}(t)+\mathbb{I}_{\{t \geq \tau\}} d \frac{W_{1}(t)+W_{2}(t)}{2}, \\
d Y_{2}(t)=\mathbb{I}_{\{t<\tau\}} d W_{2}(t)+\mathbb{I}_{\{t \geq \tau\}} d \frac{W_{1}(t)+W_{2}(t)}{2}, \\
Y_{1}(0)=x_{1}^{0}, \quad Y_{2}(0)=x_{2}^{0},
\end{array}\right.
$$

(2) $\mathrm{T}(\Psi(Y, Z))(t)=\frac{1}{2}\left(Y_{2}(\tau+t-\tau)+Z(\tau+t-\tau)-Y_{1}(\tau+t-\tau)+Z(\tau+t-\tau)\right)$ $=Z(t)$ a.s. (for $\tau<+\infty)$

Two particle system: Continuity

$$
p(\cdot, z)=\mathbb{P}\{X \in \cdot \mid T(X)=z\}=\mathbb{P}\{\Psi(Y, z) \in \cdot\} \quad \text { for } \mathbb{P}^{Z} \text {-a.a. } z
$$

where Y is the coalescing part of X

Two particle system: Continuity

$$
p(\cdot, z)=\mathbb{P}\{X \in \cdot \mid T(X)=z\}=\mathbb{P}\{\Psi(Y, z) \in \cdot\} \quad \text { for } \mathbb{P}^{Z} \text {-a.a. } z
$$

Since $z \mapsto \Psi(Y, z)=\left(Y_{1}(t)-z\left(t-\tau^{Y}\right) \mathbb{I}_{\left\{t \geq \tau^{Y}\right\}}, Y_{2}(t)+z\left(t-\tau^{Y}\right) \mathbb{I}_{\left\{t \geq \tau^{Y}\right\}}\right)$ is continuous,

$$
\mathbb{P}\{X \in \cdot \mid X \in \mathbf{C o a l}\}=\mathbb{P}\{X \in \cdot \mid T(X)=0\}=\mathbb{P}\{Y \in \cdot\}
$$

where Y is the coalescing part of X :

$$
\left\{\begin{array}{l}
d Y_{1}(t)=\mathbb{I}_{\{t<\tau\}} d W_{1}(t)+\mathbb{I}_{\{t \geq \tau\}} d \frac{W_{1}(t)+W_{2}(t)}{2} \\
d Y_{2}(t)=\mathbb{I}_{\{t<\tau\}} d W_{2}(t)+\mathbb{I}_{\{t \geq \tau\}} d \frac{W_{1}(t)+W_{2}(t)}{2} \\
Y_{1}(0)=x_{1}^{0}, \quad Y_{2}(0)=x_{2}^{0}
\end{array}\right.
$$

Finite number of particles: Coalescing part

Let $X=W=\left(W_{1}, \ldots, W_{n}\right)$, be independent independent Brownian particles with masses $m_{k}, m_{1}+\cdots+m_{n}=1$, starting from $x_{1}^{0}<\cdots<x_{n}^{0}$.

Let B be an independent copy of W. Then
has the same distribution as W

Finite number of particles：Coalescing part

Let $X=W=\left(W_{1}, \ldots, W_{n}\right)$ ，be independent independent Brownian particles with masses $m_{k}, m_{1}+\cdots+m_{n}=1$ ，starting from $x_{1}^{0}<\cdots<x_{n}^{0}$ ．

Inner product on $\mathbb{R}^{n}:\langle x, y\rangle_{m}=\sum_{k=1}^{n} x_{k} y_{k} m_{k}$ and denote pr_{x}^{m} the orthogonal projection onto $\mathbb{R}^{n}(x):=\left\{y: y_{k}=y_{l}\right.$ if $\left.x_{k}=x_{l}\right\}$ ．

Finite number of particles: Coalescing part

Let $X=W=\left(W_{1}, \ldots, W_{n}\right)$, be independent independent Brownian particles with masses $m_{k}, m_{1}+\cdots+m_{n}=1$, starting from $x_{1}^{0}<\cdots<x_{n}^{0}$.

Inner product on $\mathbb{R}^{n}:\langle x, y\rangle_{m}=\sum_{k=1}^{n} x_{k} y_{k} m_{k}$ and denote pr_{x}^{m} the orthogonal projection onto $\mathbb{R}^{n}(x):=\left\{y: y_{k}=y_{l}\right.$ if $\left.x_{k}=x_{l}\right\}$.
$\langle W, a\rangle_{m}$ is a Brownian motion with diffusion rate $\|a\|_{m}^{2}$
Coalescing part of X :

Let B be an independent copy of W. Then
has the same distribution as W

Finite number of particles: Coalescing part

Let $X=W=\left(W_{1}, \ldots, W_{n}\right)$, be independent independent Brownian particles with masses $m_{k}, m_{1}+\cdots+m_{n}=1$, starting from $x_{1}^{0}<\cdots<x_{n}^{0}$.

Inner product on $\mathbb{R}^{n}:\langle x, y\rangle_{m}=\sum_{k=1}^{n} x_{k} y_{k} m_{k}$ and denote pr_{x}^{m} the orthogonal projection onto $\mathbb{R}^{n}(x):=\left\{y: y_{k}=y_{l}\right.$ if $\left.x_{k}=x_{l}\right\}$.
$\langle W, a\rangle_{m}$ is a Brownian motion with diffusion rate $\|a\|_{m}^{2}$
Coalescing part of X :

$$
Y(t)=x^{0}+\int_{0}^{t} \operatorname{pr}_{Y(s)}^{m} d W(s), \quad Y_{1}(t) \leq \cdots \leq Y_{n}(t), \quad t \geq 0
$$

The equation has a unique strong solution

Let B be an independent copy of W. Then
has the same distribution as W

Finite number of particles: Coalescing part

Let $X=W=\left(W_{1}, \ldots, W_{n}\right)$, be independent independent Brownian particles with masses $m_{k}, m_{1}+\cdots+m_{n}=1$, starting from $x_{1}^{0}<\cdots<x_{n}^{0}$.

Inner product on $\mathbb{R}^{n}:\langle x, y\rangle_{m}=\sum_{k=1}^{n} x_{k} y_{k} m_{k}$ and denote pr_{x}^{m} the orthogonal projection onto $\mathbb{R}^{n}(x):=\left\{y: y_{k}=y_{l}\right.$ if $\left.x_{k}=x_{l}\right\}$.
$\langle W, a\rangle_{m}$ is a Brownian motion with diffusion rate $\|a\|_{m}^{2}$
Coalescing part of X :

$$
Y(t)=x^{0}+\int_{0}^{t} \operatorname{pr}_{Y(s)}^{m} d W(s), \quad Y_{1}(t) \leq \cdots \leq Y_{n}(t), \quad t \geq 0
$$

The equation has a unique strong solution

Lemma (Splitting part of X)

Let B be an independent copy of W. Then

$$
\tilde{W}(t):=Y(t)+\int_{0}^{t}\left(\operatorname{pr}_{Y(s)}^{m}\right)^{\perp} d B(s)
$$

has the same distribution as W.
$\langle\tilde{W}, a\rangle_{m}$ is a continuous martingale with quadratic variation $\left[\langle\tilde{W}, a\rangle_{m}\right]_{t}=\int_{0}^{t}\left\|\operatorname{pr}_{Y(s)}^{m} a\right\|^{2} d s+\int_{0}^{t}\left\|\left(\operatorname{pr}_{Y(s)}^{m}\right)^{\perp} a\right\|^{2} d s=\|a\|^{2} t$.

Basis generated by coalescing part

Let Y be the coalescing part of W :

$$
Y(t)=x^{0}+\int_{0}^{t} \operatorname{pr}_{Y(s)}^{m} d W(s), \quad Y_{1}(t) \leq \cdots \leq Y_{n}(t), \quad t \geq 0
$$

Define the stopping times τ_{k}^{Y} and basis $e_{k}^{Y}, k=0, \ldots, n-1$ as follows:

Basis generated by coalescing part

Let Y be the coalescing part of W ：

$$
Y(t)=x^{0}+\int_{0}^{t} \operatorname{pr}_{Y(s)}^{m} d W(s), \quad Y_{1}(t) \leq \cdots \leq Y_{n}(t), \quad t \geq 0
$$

Define the stopping times τ_{k}^{Y} and basis $e_{k}^{Y}, k=0, \ldots, n-1$ as follows：

Basis generated by coalescing part

Let Y be the coalescing part of W ：

$$
Y(t)=x^{0}+\int_{0}^{t} \operatorname{pr}_{Y(s)}^{m} d W(s), \quad Y_{1}(t) \leq \cdots \leq Y_{n}(t), \quad t \geq 0
$$

Define the stopping times τ_{k}^{Y} and basis $e_{k}^{Y}, k=0, \ldots, n-1$ as follows：

Basis generated by coalescing part

Let Y be the coalescing part of W :

$$
Y(t)=x^{0}+\int_{0}^{t} \operatorname{pr}_{Y(s)}^{m} d W(s), \quad Y_{1}(t) \leq \cdots \leq Y_{n}(t), \quad t \geq 0
$$

Define the stopping times τ_{k}^{Y} and basis $e_{k}^{Y}, k=0, \ldots, n-1$ as follows:

Basis generated by coalescing part

Let Y be the coalescing part of W :

$$
Y(t)=x^{0}+\int_{0}^{t} \operatorname{pr}_{Y(s)}^{m} d W(s), \quad Y_{1}(t) \leq \cdots \leq Y_{n}(t), \quad t \geq 0
$$

Define the stopping times τ_{k}^{Y} and basis $e_{k}^{Y}, k=0, \ldots, n-1$ as follows:

e_{k}^{Y} is a unit vector in $\mathbb{R}^{n}\left(Y\left(\tau_{k+1}^{Y}\right)\right) \ominus \mathbb{R}^{n}\left(Y\left(\tau_{k}^{Y}\right)\right)$.

Maps Ψ and T

Map Ψ :

$\tilde{W}(t)=Y(t)+\int_{0}^{t}\left(\operatorname{pr}_{Y(s)}^{m}\right)^{\perp} d B(s)=Y(t)+\sum_{k=1}^{n-1} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y}\left(\left\langle B(t), e_{k}^{Y}\right\rangle_{m}-\left\langle B\left(\tau_{k}^{Y}\right), e_{k}^{Y}\right\rangle_{m}\right)$
for $Z_{k}, k=[n-1]$, standard independent BM independent of Y

Man T:

Conditional distribution:

Then $X=T T_{T} \stackrel{d}{T}(Y, Z), T(\Psi(Y, Z))=Z$ a.s., $T^{-1}(\{0\})=$ Coal, $z \mapsto \Psi(Y, z)$ is continuous.

Hence,

Maps Ψ and T

Map Ψ :

$$
\begin{gathered}
\tilde{W}(t)=Y(t)+\int_{0}^{t}\left(\operatorname{pr}_{Y(s)}^{m}\right)^{\perp} d B(s)=Y(t)+\sum_{k=1}^{n-1} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y}\left(\left\langle B(t), e_{k}^{Y}\right\rangle_{m}-\left\langle B\left(\tau_{k}^{Y}\right), e_{k}^{Y}\right\rangle_{m}\right) \\
\stackrel{d}{=} Y(t)+\sum_{k=1}^{n-1} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y} Z_{k}\left(t-\tau_{k}^{Y}\right)
\end{gathered}
$$

for $Z_{k}, k=[n-1]$, standard independent BM independent of Y.

Maps Ψ and T

Map Ψ :

$$
\begin{gathered}
\tilde{W}(t)=Y(t)+\int_{0}^{t}\left(\operatorname{pr}_{Y(s)}^{m}\right)^{\perp} d B(s)=Y(t)+\sum_{k=1}^{n-1} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y}\left(\left\langle B(t), e_{k}^{Y}\right\rangle_{m}-\left\langle B\left(\tau_{k}^{Y}\right), e_{k}^{Y}\right\rangle_{m}\right) \\
\stackrel{d}{=} Y(t)+\sum_{k=1}^{n-1} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y} Z_{k}\left(t-\tau_{k}^{Y}\right)=: \Psi(Y, Z)
\end{gathered}
$$

for $Z_{k}, k=[n-1]$, standard independent BM independent of Y.

Maps Ψ and T

Map Ψ :

$$
\begin{gathered}
\tilde{W}(t)=Y(t)+\int_{0}^{t}\left(\operatorname{pr}_{Y(s)}^{m}\right)^{\perp} d B(s)=Y(t)+\sum_{k=1}^{n-1} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y}\left(\left\langle B(t), e_{k}^{Y}\right\rangle_{m}-\left\langle B\left(\tau_{k}^{Y}\right), e_{k}^{Y}\right\rangle_{m}\right) \\
\stackrel{d}{=} Y(t)+\sum_{k=1}^{n-1} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y} Z_{k}\left(t-\tau_{k}^{Y}\right)=: \Psi(Y, Z)
\end{gathered}
$$

for $Z_{k}, k=[n-1]$, standard independent BM independent of Y.

Map T :

$$
\mathrm{T}(W)(t):=\left(\left\langle W\left(t+\tau_{l}^{Y}\right), e_{l}^{Y}\right\rangle_{m}\right)_{l=1, \ldots, n-1}
$$

Conditional distribution:

Then $X=W{ }_{T}{ }^{d}$. $\Psi(Y, Z), T(\Psi(Y, Z))=Z$ a.s., $T^{-1}(\{0\})=$ Coal, $z \mapsto \Psi(Y, z)$ is continuous.

Hence,

Maps Ψ and T

Map Ψ :

$$
\begin{gathered}
\tilde{W}(t)=Y(t)+\int_{0}^{t}\left(\operatorname{pr}_{Y(s)}^{m}\right)^{\perp} d B(s)=Y(t)+\sum_{k=1}^{n-1} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y}\left(\left\langle B(t), e_{k}^{Y}\right\rangle_{m}-\left\langle B\left(\tau_{k}^{Y}\right), e_{k}^{Y}\right\rangle_{m}\right) \\
\stackrel{d}{=} Y(t)+\sum_{k=1}^{n-1} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y} Z_{k}\left(t-\tau_{k}^{Y}\right)=: \Psi(Y, Z)
\end{gathered}
$$

for $Z_{k}, k=[n-1]$, standard independent BM independent of Y.

Map T:

$$
\mathrm{T}(W)(t):=\left(\left\langle W\left(t+\tau_{l}^{Y}\right), e_{l}^{Y}\right\rangle_{m}\right)_{l=1, \ldots, n-1}
$$

Conditional distribution:
Then $X=W \stackrel{d}{=} \Psi(Y, Z), T(\Psi(Y, Z))=Z$ a.s., $\mathrm{T}^{-1}(\{0\})=$ Coal, $z \mapsto \Psi(Y, z)$ is continuous.

Maps Ψ and T

Map Ψ :

$$
\begin{gathered}
\tilde{W}(t)=Y(t)+\int_{0}^{t}\left(\operatorname{pr}_{Y(s)}^{m}\right)^{\perp} d B(s)=Y(t)+\sum_{k=1}^{n-1} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y}\left(\left\langle B(t), e_{k}^{Y}\right\rangle_{m}-\left\langle B\left(\tau_{k}^{Y}\right), e_{k}^{Y}\right\rangle_{m}\right) \\
\stackrel{d}{=} Y(t)+\sum_{k=1}^{n-1} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y} Z_{k}\left(t-\tau_{k}^{Y}\right)=: \Psi(Y, Z)
\end{gathered}
$$

for $Z_{k}, k=[n-1]$, standard independent BM independent of Y.

Map T :

$$
\mathrm{T}(W)(t):=\left(\left\langle W\left(t+\tau_{l}^{Y}\right), e_{l}^{Y}\right\rangle_{m}\right)_{l=1, \ldots, n-1}
$$

Conditional distribution:

Then $X=W \stackrel{d}{=} \Psi(Y, Z), T(\Psi(Y, Z))=Z$ a.s., $\mathrm{T}^{-1}(\{0\})=$ Coal, $z \mapsto \Psi(Y, z)$ is continuous.

Hence,

$$
\mathbb{P}\{X \in \cdot \mid X \in \mathbf{C o a l}\}=\mathbb{P}\{X \in \cdot \mid \mathrm{T}(X)=0\}=\mathbb{P}\{Y \in \cdot\}
$$

Infinite particle system

$$
X_{t}(u)=u+W_{t}(u), \quad u \in[0,1], \quad t \geq 0
$$

is a cylindrical Wiener process in $L_{2}=L_{2}[0,1]$ ．

Disintegration of cylindrical Wiener process

Let $X_{t}(u)=u+W_{t}(u), u \in[0,1], t \geq 0$, be a cylindrical Wiener process in L_{2}.

Coalescing part:

where $\mathrm{id}(u)=u, u \in[0,1]$, and pr_{g} is the orthogonal projection onto subspace of $\sigma(g)$-measurable functions in L_{2}.

Construction problems:

Disintegration of cylindrical Wiener process

Let $X_{t}(u)=u+W_{t}(u), u \in[0,1], t \geq 0$, be a cylindrical Wiener process in L_{2}.
Coalescing part:

$$
\begin{equation*}
Y_{t}=\mathrm{id}+\int_{0}^{t} \operatorname{pr}_{Y_{s}} d W_{s}, \quad Y_{t} \in L_{2}^{\uparrow}:=\left\{g \in L_{2}: g \uparrow\right\} \tag{1}
\end{equation*}
$$

where $\operatorname{id}(u)=u, u \in[0,1]$, and pr_{g} is the orthogonal projection onto subspace of $\sigma(g)$-measurable functions in L_{2}.

Map Ψ :

Construction problems:

Disintegration of cylindrical Wiener process

Let $X_{t}(u)=u+W_{t}(u), u \in[0,1], t \geq 0$, be a cylindrical Wiener process in L_{2}.
Coalescing part:

$$
\begin{equation*}
Y_{t}=\mathrm{id}+\int_{0}^{t} \operatorname{pr}_{Y_{s}} d W_{s}, \quad Y_{t} \in L_{2}^{\uparrow}:=\left\{g \in L_{2}: g \uparrow\right\} \tag{1}
\end{equation*}
$$

where $\operatorname{id}(u)=u, u \in[0,1]$, and pr_{g} is the orthogonal projection onto subspace of $\sigma(g)$-measurable functions in L_{2}.
Map Ψ :

$$
\Psi(Y, Z)(t)=Y(t)+\sum_{k=1}^{\infty} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y} Z_{k}\left(t-\tau_{k}^{Y}\right)
$$

Disintegration of cylindrical Wiener process

Let $X_{t}(u)=u+W_{t}(u), u \in[0,1], t \geq 0$, be a cylindrical Wiener process in L_{2}.
Coalescing part:

$$
\begin{equation*}
Y_{t}=\mathrm{id}+\int_{0}^{t} \operatorname{pr}_{Y_{s}} d W_{s}, \quad Y_{t} \in L_{2}^{\uparrow}:=\left\{g \in L_{2}: g \uparrow\right\} \tag{1}
\end{equation*}
$$

where $\operatorname{id}(u)=u, u \in[0,1]$, and pr_{g} is the orthogonal projection onto subspace of $\sigma(g)$-measurable functions in L_{2}.

Map Ψ :

$$
\Psi(Y, Z)(t)=Y(t)+\sum_{k=1}^{\infty} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y} Z_{k}\left(t-\tau_{k}^{Y}\right)
$$

Construction problems:

(1) X does not take values in L_{2};Equation (1) admits weak solutions, not necessarily unique; probability at a fixed point.

Disintegration of cylindrical Wiener process

Let $X_{t}(u)=u+W_{t}(u), u \in[0,1], t \geq 0$, be a cylindrical Wiener process in L_{2}.
Coalescing part:

$$
\begin{equation*}
Y_{t}=\mathrm{id}+\int_{0}^{t} \operatorname{pr}_{Y_{s}} d W_{s}, \quad Y_{t} \in L_{2}^{\uparrow}:=\left\{g \in L_{2}: g \uparrow\right\} \tag{1}
\end{equation*}
$$

where $\operatorname{id}(u)=u, u \in[0,1]$, and pr_{g} is the orthogonal projection onto subspace of $\sigma(g)$-measurable functions in L_{2}.

Map Ψ :

$$
\Psi(Y, Z)(t)=Y(t)+\sum_{k=1}^{\infty} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y} Z_{k}\left(t-\tau_{k}^{Y}\right)
$$

Construction problems:

(1) X does not take values in L_{2};
(2) Equation (1) admits weak solutions, not necessarily unique; probability at a fixed point.

Disintegration of cylindrical Wiener process

Let $X_{t}(u)=u+W_{t}(u), u \in[0,1], t \geq 0$ ，be a cylindrical Wiener process in L_{2} ．
Coalescing part：

$$
\begin{equation*}
Y_{t}=\mathrm{id}+\int_{0}^{t} \operatorname{pr}_{Y_{s}} d W_{s}, \quad Y_{t} \in L_{2}^{\uparrow}:=\left\{g \in L_{2}: g \uparrow\right\} \tag{1}
\end{equation*}
$$

where $\operatorname{id}(u)=u, u \in[0,1]$ ，and pr_{g} is the orthogonal projection onto subspace of $\sigma(g)$－measurable functions in L_{2} ．
Map Ψ ：

$$
\Psi(Y, Z)(t)=Y(t)+\sum_{k=1}^{\infty} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}} e_{k}^{Y} Z_{k}\left(t-\tau_{k}^{Y}\right)
$$

Construction problems：

（1）X does not take values in L_{2} ；
（2）Equation（1）admits weak solutions，not necessarily unique；
（3）$z \mapsto \Psi(Y, z)$ is not continuous，so we cannot take a value of the regular conditional probability at a fixed point．

Value of regular conditional probability along a sequence

Let X be a random element in a Polish space \mathbf{E} and $T: \mathbf{E} \rightarrow \mathbf{F}$ ．
\qquad

Value of regular conditional probability along a sequence

Let X be a random element in a Polish space \mathbf{E} and $T: \mathbf{E} \rightarrow \mathbf{F}$.
Let p be a regular conditional probability of X given $\mathrm{T}(X)$.

Value of regular conditional probability along a sequence

Let X be a random element in a Polish space \mathbf{E} and $T: \mathbf{E} \rightarrow \mathbf{F}$.
Let p be a regular conditional probability of X given $\mathrm{T}(X)$.
Consider random elements $\left\{\xi^{n}, n \geq 1\right\}$ in a metric space \mathbf{F} such that
(B1) $\mathbb{P}^{\xi^{n}} \ll \mathbb{P}^{\mathrm{T}(X)}$ for all $n \geq 1$,
(B2) $\xi^{n} \xrightarrow{d} z_{0}$ in \mathbf{F}.

Value of regular conditional probability along a sequence

Let X be a random element in a Polish space \mathbf{E} and $T: \mathbf{E} \rightarrow \mathbf{F}$.
Let p be a regular conditional probability of X given $\mathrm{T}(X)$.
Consider random elements $\left\{\xi^{n}, n \geq 1\right\}$ in a metric space \mathbf{F} such that
(B1) $\mathbb{P}^{\xi^{n}} \ll \mathbb{P}^{\mathrm{T}(X)}$ for all $n \geq 1$,
(B2) $\xi^{n} \xrightarrow{d} z_{0}$ in \mathbf{F}.

A probability measure ν on \mathbf{E} is the value at z_{0} of the regular conditional probability p along $\left\{\xi^{n}\right\}$ if for every $f \in C_{b}(\mathbf{E})$

$$
\mathbb{E} \int_{\mathbf{E}} f(x) p\left(d x, \xi^{n}\right) \rightarrow \int_{\mathbf{E}} f(x) \nu(d x), \quad n \rightarrow \infty
$$

The measure ν represents the conditional distribution $\mathbb{P}\left\{X \in \cdot \mid \mathrm{T}(X)=z_{0}\right\}$.

Value of regular conditional probability along a sequence

Let X be a random element in a Polish space \mathbf{E} and $T: \mathbf{E} \rightarrow \mathbf{F}$ ．
Let p be a regular conditional probability of X given $\mathrm{T}(X)$ ．
Consider random elements $\left\{\xi^{n}, n \geq 1\right\}$ in a metric space \mathbf{F} such that
（B1） $\mathbb{P}^{\xi^{n}} \ll \mathbb{P}^{\mathrm{T}(X)}$ for all $n \geq 1$ ，
（B2）$\xi^{n} \xrightarrow{d} z_{0}$ in \mathbf{F} ．

A probability measure ν on \mathbf{E} is the value at z_{0} of the regular conditional probability p along $\left\{\xi^{n}\right\}$ if for every $f \in C_{b}(\mathbf{E})$

$$
\mathbb{E} \int_{\mathbf{E}} f(x) p\left(d x, \xi^{n}\right) \rightarrow \int_{\mathbf{E}} f(x) \nu(d x), \quad n \rightarrow \infty
$$

The measure ν represents the conditional distribution $\mathbb{P}\left\{X \in \cdot \mid \mathrm{T}(X)=z_{0}\right\}$ ．

Lemma

Let $z_{0} \in \operatorname{supp} \mathbb{P}^{T(X)} . \exists \nu$ which is the value at z_{0} of p along any sequence $\left\{\xi^{n}\right\}$ iff p has a version continuous at z_{0} ．In this case，ν is its value at z_{0} ．

Approximation and value along a sequence

Let C be a closed set in \mathbf{E}. One usually defines

$$
\mathbb{P}\{X \in \cdot \mid X \in C\}=\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left\{X \in \cdot \mid X \in C_{\varepsilon}\right\}
$$

where $C_{\varepsilon}=\left\{x \in \mathbf{E}: d_{\mathbf{E}}(C, x)<\varepsilon\right\}$.
Take
and note that $\mathrm{T}^{-1}(\{0\})=C$.
Set $\varepsilon:-T(X)$ and define random elements ξ by

Then $\left\{\xi^{\varepsilon}, \varepsilon>0\right\}$, satisfies (B1), (B2) with $z_{0}=0$ and

Approximation and value along a sequence

Let C be a closed set in \mathbf{E}. One usually defines

$$
\mathbb{P}\{X \in \cdot \mid X \in C\}=\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left\{X \in \cdot \mid X \in C_{\varepsilon}\right\}
$$

where $C_{\varepsilon}=\left\{x \in \mathbf{E}: d_{\mathbf{E}}(C, x)<\varepsilon\right\}$.
Take

$$
\mathrm{T}(x):=d_{\mathbf{E}}(C, x), \quad x \in \mathbf{E}
$$

and note that $\mathrm{T}^{-1}(\{0\})=C$.
Set $\xi:=T(X)$ and define random elements ξ^{ε} by

Then $\left\{\xi^{\varepsilon}, \varepsilon>0\right\}$, satisfies (B1), (B2) with $z_{0}=0$ and

Approximation and value along a sequence

Let C be a closed set in \mathbf{E}. One usually defines

$$
\mathbb{P}\{X \in \cdot \mid X \in C\}=\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left\{X \in \cdot \mid X \in C_{\varepsilon}\right\}
$$

where $C_{\varepsilon}=\left\{x \in \mathbf{E}: d_{\mathbf{E}}(C, x)<\varepsilon\right\}$.
Take

$$
\mathrm{T}(x):=d_{\mathbf{E}}(C, x), \quad x \in \mathbf{E}
$$

and note that $\mathrm{T}^{-1}(\{0\})=C$.
Set $\xi:=T(X)$ and define random elements ξ^{ε} by

$$
\mathbb{P}\left\{\xi^{\varepsilon} \in A\right\}=\frac{1}{\mathbb{P}\{\xi<\varepsilon\}} \int_{A} \mathbb{I}_{\{x<\varepsilon\}} \mathbb{P}^{\xi}(d x)=\mathbb{P}\left\{\xi \in A \mid X \in C_{\varepsilon}\right\}, \quad A \in \mathcal{B}(\mathbf{E})
$$

Then $\left\{\xi^{\varepsilon}, \varepsilon>0\right\}$, satisfies (B1), (B2) with $z_{0}=0$ and

Approximation and value along a sequence

Let C be a closed set in \mathbf{E}. One usually defines

$$
\mathbb{P}\{X \in \cdot \mid X \in C\}=\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left\{X \in \cdot \mid X \in C_{\varepsilon}\right\}
$$

where $C_{\varepsilon}=\left\{x \in \mathbf{E}: d_{\mathbf{E}}(C, x)<\varepsilon\right\}$.
Take

$$
\mathrm{T}(x):=d_{\mathbf{E}}(C, x), \quad x \in \mathbf{E}
$$

and note that $\mathrm{T}^{-1}(\{0\})=C$.
Set $\xi:=T(X)$ and define random elements ξ^{ε} by

$$
\mathbb{P}\left\{\xi^{\varepsilon} \in A\right\}=\frac{1}{\mathbb{P}\{\xi<\varepsilon\}} \int_{A} \mathbb{I}_{\{x<\varepsilon\}} \mathbb{P}^{\xi}(d x)=\mathbb{P}\left\{\xi \in A \mid X \in C_{\varepsilon}\right\}, \quad A \in \mathcal{B}(\mathbf{E})
$$

Then $\left\{\xi^{\varepsilon}, \varepsilon>0\right\}$, satisfies (B1), (B2) with $z_{0}=0$ and

$$
\begin{aligned}
\mathbb{E} \int_{\mathbf{E}} f(x) p\left(d x, \xi^{\varepsilon}\right) & =\frac{\mathbb{E} f(X) \mathbb{I}_{\{\xi<\varepsilon\}}}{\mathbb{P}\{\xi<\varepsilon\}}=\frac{\mathbb{E} f(X) \mathbb{I}_{\left\{X \in C_{\varepsilon}\right\}}}{\mathbb{P}\left\{X \in C_{\varepsilon}\right\}} \\
& =\int_{\mathbb{E}} f(x) \mathbb{P}\left\{X \in d x \mid X \in C_{\varepsilon}\right\}
\end{aligned}
$$

where p is the regular conditional probability of X given ξ.

Coalescing part and state space

There exists a continuous process Y in L_{2} and a cylindrical Wiener process W such that

$$
Y_{t}=\mathrm{id}+\int_{0}^{t} \operatorname{pr}_{Y_{s}} d W_{s}, \quad Y_{t} \in L_{2}^{\uparrow}, \quad t \geq 0
$$

The process Y has a modification $\left\{Y_{t}(u), u \in[0,1], t \geq 0\right\}$ such that
(1) $Y(u)$ is a continuous square-integrable martingale;
(2) $Y_{0}(u)=u$;
(3) for $u<v, Y_{t}(u) \leq Y_{t}(v)$;
(44 $\langle Y(u), Y(v)\rangle_{t}=\int_{0}^{t} \frac{\mathbb{I}_{\left\{Y_{s}(u)=Y_{s}(v)\right\}}^{m(u, s)}}{m} d s$, where $m(u, s)=\operatorname{Leb}\left\{v: Y_{s}(v)=Y_{s}(u)\right\}$.

Coalescing part and state space

There exists a continuous process Y in L_{2} and a cylindrical Wiener process W such that

$$
Y_{t}=\mathrm{id}+\int_{0}^{t} \operatorname{pr}_{Y_{s}} d W_{s}, \quad Y_{t} \in L_{2}^{\uparrow}, \quad t \geq 0
$$

The process Y has a modification $\left\{Y_{t}(u), u \in[0,1], t \geq 0\right\}$ such that
(1) $Y(u)$ is a continuous square-integrable martingale;
(2) $Y_{0}(u)=u$;
(3) for $u<v, Y_{t}(u) \leq Y_{t}(v)$;
(4) $\langle Y(u), Y(v)\rangle_{t}=\int_{0}^{t} \frac{\mathbb{I}_{\left\{Y_{s}(u)=Y_{s}(v)\right\}}^{m(u, s)}}{m} d s$, where $m(u, s)=\operatorname{Leb}\left\{v: Y_{s}(v)=Y_{s}(u)\right\}$.

Take $X:=(Y, W)$ and find the conditional distrib. to the event of coal. paths for W.

State space

Let $h_{j}, j \geq 0$, be a fixed orthonormal basis in L_{2} with $h_{0}=1$. Set $\mathrm{E}:=$ and identify

Define as before

is cylindrical Wiener process in $L_{2}^{0}=L_{2} \ominus$ \{constant functions $\}$
where Z is a cylindrical Wiener process in L_{2}^{0}, identified with

State space

Let $h_{j}, j \geq 0$ ，be a fixed orthonormal basis in L_{2} with $h_{0}=1$ ．
Set $\mathbf{E}:=C\left([0, \infty), L_{2}\right) \times C([0, \infty), \mathbb{R})^{\mathbb{Z}_{+}}$and identify

$$
W=\sum_{j=0}^{\infty} h_{j}\left\langle W, h_{j}\right\rangle \quad \longleftrightarrow \quad \widehat{W}=\left(\left\langle W, h_{j}\right\rangle\right)_{j \geq 0} \in C([0, \infty), \mathbb{R})^{\mathbb{Z}_{+}}
$$

Define as before

is cylindrical Wiener process in $L_{2}^{0}=L_{2} \ominus$ \｛constant functions\}.
where Z is a cylindrical Wiener process in L_{2}^{0} ，identified with

State space

Let $h_{j}, j \geq 0$, be a fixed orthonormal basis in L_{2} with $h_{0}=1$.
Set $\mathrm{E}:=C\left([0, \infty), L_{2}\right) \times C([0, \infty), \mathbb{R})^{\mathbb{Z}_{+}}$and identify

$$
W=\sum_{j=0}^{\infty} h_{j}\left\langle W, h_{j}\right\rangle \quad \longleftrightarrow \quad \widehat{W}=\left(\left\langle W, h_{j}\right\rangle\right)_{j \geq 0} \in C([0, \infty), \mathbb{R})^{\mathbb{Z}_{+}}
$$

Define as before $\cdots<\tau_{n}<\cdots<\tau_{1}<\infty$ and $e_{k}^{Y}, k \geq 0$.
is cylindrical Wiener process in $L_{2}^{0}=L_{2} \ominus$ \{constant functions\}.
where Z is a cylindrical Wiener process in L_{2}^{0}, identified with

State space

Let $h_{j}, j \geq 0$, be a fixed orthonormal basis in L_{2} with $h_{0}=1$.
Set $\mathrm{E}:=C\left([0, \infty), L_{2}\right) \times C([0, \infty), \mathbb{R})^{\mathbb{Z}_{+}}$and identify

$$
W=\sum_{j=0}^{\infty} h_{j}\left\langle W, h_{j}\right\rangle \quad \longleftrightarrow \quad \widehat{W}=\left(\left\langle W, h_{j}\right\rangle\right)_{j \geq 0} \in C([0, \infty), \mathbb{R})^{\mathbb{Z}_{+}}
$$

Define as before $\cdots<\tau_{n}<\cdots<\tau_{1}<\infty$ and $e_{k}^{Y}, k \geq 0$.

$$
\mathrm{T}_{t}(X)=\mathrm{T}_{t}(Y, W)=\sum_{k=1}^{\infty} e_{k}^{Y}\left\langle W_{t+\tau_{k}^{Y}}, e_{k}^{Y}\right\rangle, \quad t \geq 0,
$$

is cylindrical Wiener process in $L_{2}^{0}=L_{2} \ominus$ \{constant functions $\}$.
where Z is a cylindrical Wiener process in L_{2}^{0}, identified with

State space

Let $h_{j}, j \geq 0$, be a fixed orthonormal basis in L_{2} with $h_{0}=1$.
Set $\mathbf{E}:=C\left([0, \infty), L_{2}\right) \times C([0, \infty), \mathbb{R})^{\mathbb{Z}_{+}}$and identify

$$
W=\sum_{j=0}^{\infty} h_{j}\left\langle W, h_{j}\right\rangle \quad \longleftrightarrow \quad \widehat{W}=\left(\left\langle W, h_{j}\right\rangle\right)_{j \geq 0} \in C([0, \infty), \mathbb{R})^{\mathbb{Z}_{+}}
$$

Define as before $\cdots<\tau_{n}<\cdots<\tau_{1}<\infty$ and $e_{k}^{Y}, k \geq 0$.

$$
\mathrm{T}_{t}(X)=\mathrm{T}_{t}(Y, W)=\sum_{k=1}^{\infty} e_{k}^{Y}\left\langle W_{t+\tau_{k}^{Y}}, e_{k}^{Y}\right\rangle, \quad t \geq 0,
$$

is cylindrical Wiener process in $L_{2}^{0}=L_{2} \ominus$ \{constant functions $\}$.

$$
\Psi_{t}(Y, Z)=\left(Y_{t}, Y_{t}+\sum_{k=1}^{\infty} e_{k}^{Y} \mathbb{I}_{\left\{t \geq \tau_{k}^{Y}\right\}}\left\langle Z_{t-\tau_{k}^{Y}}, e_{k}^{Y}\right\rangle\right), \quad t \geq 0,
$$

where Z is a cylindrical Wiener process in L_{2}^{0}, identified with

$$
Z=\sum_{j=1}^{\infty} h_{j}\left\langle Z, h_{j}\right\rangle \quad \longleftrightarrow \quad \widehat{Z}=\left(\left\langle Z, h_{j}\right\rangle\right)_{j \geq 1} \in C([0, \infty), \mathbb{R})^{\mathbb{N}}=: \mathbf{F}
$$

Main result: Infinite dimensional case

Theorem

The law of (Y, \widehat{Y}) is the value at 0 of the regular conditional probability of X given $\xi:=T(X)$ along the sequence $\left\{\xi^{n}\right\}_{n \geq 1}$, where

$$
\left\{\begin{array}{l}
d \xi_{j}^{n}(t)=-\alpha_{j}^{n} \mathbb{I}_{\{t \leq n\}} \xi_{j}^{n}(t) d t+d \widehat{\xi}_{j}(t) \\
\xi_{j}^{n}(0)=0
\end{array}\right.
$$

where $\left\{\alpha_{j}^{n}, n, j \geq 1\right\}$ is a family of non-negative real numbers such that
(O1) for every $n \geq 1$ the series $\sum_{j=1}^{\infty}\left(\alpha_{j}^{n}\right)^{2}<+\infty$;
(O2) for every $j \geq 1, \alpha_{j}^{n} \rightarrow+\infty$ as $n \rightarrow \infty$.

References

V．Konarovskyi，V．Marx．
Conditional Distribution of Independent Brownian Motions to Event of Coalescing Paths
arXiv：arXiv：2008．02568．

Thank you！

