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Dean-Kawasaki equation

The Dean-Kawasaki equation:
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Dean-Kawasaki equation
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Dean-Kawasaki equation

The Dean-Kawasaki equation:

0 « OF (ue) : a
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O L is a continuous measure-valued process in R?;

SF(v) 1 F(v+edy)—F(v) _ 8
o SE(g) = i FUEEI=FC) — 2 p(y 4 e,

is the functional derivative of F’;

e=

o W is a space-time white nose;

O « is a positive parameter.



Goal of the talk

The Dean-Kawasaki equation:

0 _ 5F(:U’t) I a
= §Aut +V- (Ntv S +V. (\/thWt) (DK% eq)

The equation is used for modeling of behaviour of huge number of particles in the
Langevin dynamics.

(K. Kawasaki '94; D. Dean '96; A. Donev, E. Vanden-Eijnden '14, '15;
B. Derrida '16; J. Zimmer '19; B. Gess '19)
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equation well-posed?
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Goal of the talk

The Dean-Kawasaki equation:

0 _« 6F(:U’t) T @
&Mt = gA/Lt +V- (utV S +V- (\//TtWt) (DK% eq)

The equation is used for modeling of behaviour of huge number of particles in the
Langevin dynamics.

(K. Kawasaki '94; D. Dean '96; A. Donev, E. Vanden-Eijnden '14, '15;
B. Derrida '16; J. Zimmer '19; B. Gess '19)

F' corresponds for the interaction between particles

Open questions until now: What is a notion of solution to the D-K equation? Is the
equation well-posed?

Today: We completely answer this question in the case of “smooth” F




Comparison with equation for Super-Brownian motion

The Dean-Kawasaki equation without interaction:

0 @ . o
aut = §A/Lt + V- (\//ZWt) (DKG eq)
Equation for the Super-Brownian motion:
0

ik = %Aut + VWi (SB eq)



The Dean-Kawasaki equation without interaction:

Comparison with equation for Super-Brownian motion
)

ot =
Equation for the Super-Brownian motion:

%A/M + V- (\//TtWt)

(DKG eq)
0 o .
ittt = 5 Bue + VW (SB eq)
Set (p,v) = [za (z)v(dz)
A continuous process y: € Ms(R?), ¢t > 0, is a solution to (SB eq) if, for every
¢ € GRY)

t
e
My (t) = (so,ut>*<s0,uo>f§/ (Ap, ps)ds
is a martingale with quadratic variation
‘ 2
/ (7, ps)ds
0

A. Etheridge, An Introduction to Superprocesses.

See also works of D. Dawson, E. Perkins, L. Mytnik




The Dean-Kawasaki equation without interaction:

Comparison with equation for Super-Brownian motion
)

ot =
Equation for the Super-Brownian motion:

& B+ V- (Vi)

(DKG eq)
0 o .
Sile = 5 D+ W (SB eq)
Set (p,v) = [za (z)v(dz)
A continuous process y: € Ms(R?), ¢t > 0, is a solution to (SB eq) if, for every
¢ € C(RY)

t
e
My (t) = (so,ut%(so,uo%g/ (Ap, ps)ds
is a martingale with quadratic variation

t 3
/ (©°, s)ds (for D-K equation: / (|Ve|? us)ds)
0 0




Definition of solutions to (DK% eq)
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Definition of (martingale) solution
¢ € GRY)

M*P(t) = <§07,U‘t> - <§07,U‘0>

A continuous process y1; € M (R%), t > 0 is a solution to (DK% eq) if, for every

2

t t
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is a martingale with quadratic variation

t
/ (VP2 pa)ds.
0
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Trivial solutions to (DK% eq) and the main result
Let X%(¢),t>0,i=1,.

,n, be a solution to
i OF (pe)
dX'(t) =V
) Sie
— 1

n

(XU (4)dt + Vndw' (t), i=1,.
where L > iy Oxi(r) and w; are standard independent BM
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Trivial solutions to (DK% eq) and the main result

Let X%(t),t>0,4=1,...,n, be a solution to

dX'(t) = V%(Xi(t))dt +Vndw'(t), i=1,...,n

L 3" Oxi(y and w; are standard independent BM

where pi; =

By the 1td formula u, t > 0, is a solution to

0 «a OF (ue) .
aut = §A,th +V- (Mthm +V. (\/,LTtWt)

with o = n.

(DK eq)

Let jo(RY) = 1, and F : M;(R?) — R be bounded and twice continuously
differentiable in p and z with bounded derivatives. Then the equation has a
(unique) solution iff & = n and o = =377 | 6,:. Moreover, it is defined as

above.




Strategy of the proof

aﬂt %Am + V- (\/,LTtWt)

@ Proof in the case F = 0.



Strategy of the proof

e
ot = §A/Lt +V- (/Ltv

@ Proof in the case F' = 0.

@ Girsanov transform
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Existence of solutions to
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Basic properties of solutions to (DK{ eq)
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D= a7 ()
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o The equation preserves the total mass, i.e u:(R?) = po(R?).
Take ¢ = 1. Then

pe(RY) = (e, ©) = (1o, ) + /

0
where the q.v. [My]: = [1(|Vy|?, ps)ds =0

(Ap, ps)yds + M, (t)



Basic properties of solutions to (DK{ eq)

a .

D= a7 ()

aptt = 3B +V Wi

o The equation preserves the total mass, i.e u:(R?) = po(R?).
Take ¢ = 1. Then

t
1t (RY) = (e, ) = (1o, @) +/ (A, ps)ds + My (t)
0
where the q.v. [My]: = [1(|Vy|?, ps)ds =0
o Laplace duality:

—(ut, —(poyv(t
Ee(tf) — o= {mosu( ))7
where v is a solution to the Hamilton-Jacobi equation:

o _ 1 2
5t = 5Av— 5|Vl
Vt=o = f
dﬁefwvs#“(t*ls)) _ ef(um'”(f/*sﬁ

{<mus, Osv(t — s) — %Av(t —s)+ %|V'u(t —8)|?)| ds + dM

[m]
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Hamilton-Jacobi equation and generating function of 1;(A)

H-J equation:
%v = 2 Av — 1|Vo)?,
Vli=o = f
Solution to H-J equation:
Vif = —aln (Pteféf)
where u(t) = P.g is the solution to the heat equation:

ou __ «
{Bt = 34y,

ult=0 = g



Hamilton-Jacobi equation and generating function of j;(A)

H-J equation:

% = SAv — %|V1}|2,
V]i=0 = f

Solution to H-J equation:
Vif = —aln (Pteféf)

where u(t) = P.g is the solution to the heat equation:

ou __ «
St = 3Au,
uli=0 = g

For Ac R% and ¢t > 0,

Ee To#t(A) — ge—{uerala) _ ,—(po,Vi(rala)) _ eOé(Hovln(lJr(e_T*l)PtﬂA)}

, r>0

Consequently,

Egort(A) _ eOé(uo»ln(lJr(S*l)PtI[A))’ s=e ">0




Proof of the theorem, F' = 0

0 Egaht(A) — palpo,In(1+(s—=1)Prla))

t>0, AcCR?;
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Proof of the theorem, F' = 0

0 Egart(A) — palpo,In(1+(s=1)Pela))

o Let A is bounded and ¢ > 0

t>0, AcCR?;

— Pla <1-9, for some § > 0;
0 5+ o In+(=DPla) s \yell-defined and inf. diff. in a neighbourhood of 0;



Proof of the theorem, F' = 0

0 Egaht(A) — palpo,In(1+(s—=1)Prla))

o Let A is bounded and ¢ > 0

t>0, AcCR?;

— Pla <1-46, for some § > 0;
0 5+ o In+(=DPla) s \ell-defined and inf. diff. in a neighbourhood of 0;
Let £ be a nonnegative random variable on R and Vn > 1

Es* = Zskpk +o(s"), s—0+.

k=0
Then £ e NU {0} as. and P{{ =k} =pip, k> 1.
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Proof of the theorem, F' = 0

0 Egaht(A) — palpo,In(1+(s—=1)Prla))

o Let A is bounded and ¢ > 0

t>0, AcCR?;

— Pla <1-46, for some § > 0;
0 5+ o In+(=DPla) s \ell-defined and inf. diff. in a neighbourhood of 0;
Let £ be a nonnegative random variable on R and Vn > 1

Es* = Zskpk +o(s"), s—0+

k=0
\

Then £ e NU {0} as. and P{{ =k} =pip, k> 1.

Qo Oz/Lt(A) e NU {0}.

o Making AT R, au(A) = a €N,

o Making t — 0+, we get 1o = - 3% | 5.
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A special form of F

For f € CZ(R) and ¢ € CZ(R%) we assume that

Fv) = (g, v);

IS Mf(Rd).



A special form of F

For f € CZ(R) and ¢ € CZ(R%) we assume that
F(v) = f({p,1), veE MR
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A special form of F'

For f € CZ(R) and ¢ € CZ(R%) we assume that

F(v) =

[ (o), v e My(EY),
0 (2) = (1))
g 5F(2V) (wv y) =

= (e, v))e(2)e(y)

Let G(v) = g((1h,v)), g € CZ(R), ¥ € CZ(R?) and i be a solution to (DK% eq).

a 0G oF

MO = GG) 6 - [ |5 (852 )~ (V22 922 )
-+ 5 <Ad Vw o Vyr‘ugfs;p(dy),/is>:| dS

is a martingale with q.v. [MG] = fo <‘VMS ,us> ds.

[m]
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Girsanov transform and proof of the main theorem

F) =f{ev),

Gw) =g(($,v)) veMsR).
Let 4 be a solution to (DK% eq) on (2, F,P). Define
dP® =

MEO—3 Ml gp o i
Then p: solves on (2, F,P)

9
attt =

O(F (s
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D)) 9 (i)
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Girsanov transform and proof of the main theorem

F) =f{ev),

MEO—3 Ml gp o i
Then p: solves on (2, F,P)

L

ottt

O(F (s
%ANt“‘V'(NtV( (s)

Sfts

G(us))) Ly, (mwt)

(o pt) = (s pi0) + =

2

Gw) =g(($,v)) veMsR).
Let 4 be a solution to (DK% eq) on (2, F,P). Define
dP® =

t t P
/ <Aw7us>d8—/ <V¢~V
0 0
is a martingale with q.v. [M,]; = fg(|th|2,us>ds

s s > ds+My(t)
Opts
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Girsanov transform and proof of the main theorem

MEO=3 M gp o FB
Then p; solves on (Q, F,P%)

Fv) = [ (l.0)),  G) = g((, ) v e My(R.
Let u¢ be a solution to (DK% eq) on (2, F,P). Define
dP¢ =

t
9. _a L SF) =G\ L o (
= ZAIJt—l-V (Ntv o + Vv (\//.TtWt)
t t SF
(s pt) = <<p,uo>+g/0<A<P,us>ds—/0 <V¢-V

,/,LS> ds+My(t)
Ops
is a martingale with q.v. [M,]; = fg(|Vgo|2,p,3)ds; [MG]t = fg <‘V

2
s 1/-’¢S>d$

Opis
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Girsanov transform and proof of the main theorem

MEO=3 M gp o FB
Then p; solves on (Q, F,P%)

Fv) = [ (l.0)),  G) = g((, ) v e My(R.
Let u¢ be a solution to (DK% eq) on (2, F,P). Define
dP¢ =

t
9. _a L SF) =G\ L o (
= ZAIJt—l-V (Ntv o + Vv (\//.TtWt)
t t SF
(s pt) = <<p,uo>+g/0<A<P,us>ds—/0 <V¢-V

,/,LS> ds+My(t)
Ops
is a martingale with q.v. [M,]; = fg(|Vgo|2,p,3)ds; [MG]t = fg <‘V

_ sa |?
Opis
t G
(01, 1), = [ <w-v
0

’ ,LL5> d.S
s ) ds.
Sps " >

[m]
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F(v) =

Fle), GWw)=g((,v) veMsRY.
Let 4 be a solution to (DK% eq) on (2, F,P). Define
dP¢ = e

MEW)=3 Ml gp o0 FH
Then p: solves on (2, F,P)
%)

Girsanov transform and proof of the main theorem

o=

%Aut 4\ o (’utvd(F(ﬂs()Sl;G(Ns))) +

v (VW)
(@, t) = (0, 1o +%/{:<A%us>ds—/t<v¢ v

oG -
>ds+/ <V<p v 7u5>ds+M¢
(Sué 5,Us
is a martingale with q.v. [M,]; = fg(|V<p|2,,us>ds on the space (Q, F,P%)
¢ oG
219 = [ (Ve T 8% ),
0 dpis

[m]
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The general case

The same result, in particular the 1t formul, holds for
F(V) = f(<W17V>,---7<§0k7V>)

and () = g({1, V). ., (G, )
MO = Glo) = Gluo) - [ [g <A‘5G
!

(FG)
oG oF
i) Vi V)
< v. v,2%; (dy),us>]ds
Rd 6

is a martingale with q.v. [M€], = = [ <‘V ,,us> ds.

2

dps
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The general case

The same result, in particular the 1t formul, holds for

F(V):f(<§0171/>7"'7<§0k7’/>) and G(V)=9(<1/}17V>7-~-

ME(t) = G(p) — Glpo) — /Ot [% <A§Z’“S> - <V§,i
+ %< Ve 5G (dy),us>] ds

,,us> ds.

Ops

is a martingale with q.v. [M€], = I <‘V oG

\.

» (¥m, 1)) (FG)

.VLF,HS>

Ofts

General case:

Let F,G : My(R?%) — R bounded twice continuously differentiable functions with

bounded derivatives, shortly F, G € C;**(M(R%)).

We need F,, — F, VW), ¢80 g, @, vi9el) g

where G, F;, have the form (FG)



Bernstein polynomials on [0, 1]* (d = 1)

)
For g : [0,1] — R define Bernstein polynomials

n

Zg ( ) Chat(1— 2" =3 g (%) on(z), zel01], n>1

k=0




Bernstein polynomials on [0, 1]* (d = 1)
For g : [0,1] — R define Bernstein polynomials
B (g9)(x

n

Zg< )Ckklffﬂ) 7k=Zg(§>wk( ), z€]0,1], n>1

k=0

o Let g € C™[0,1], then B,(g) — g in C™[0,1] as n — oo

o Moreover, if g, — g € C™[0, 1], then B, (gr) — g in C™[0,1] as k,n — oo
(For d > 1 see e.g. Veretennikov '16)

o>



Bernstein polynomials on [0, 1]* (d = 1)
For g : [0,1] — R define Bernstein polynomials

By (g) (=

n

Zg< )Ckklffv) 7k=zg(s>wk( ), x€l[0,1], n>1

k=0

o Let g € C™[0,1], then B,(g) — g in C™[0,1] as n — oo

o Moreover, if g, — g € C™[0, 1], then B, (gr) — g in C™[0,1] as k,n — oo
(For d > 1 see e.g. Veretennikov '16)

For v € My([0,1]) take

n

= Z(ww/)%«

k=1

Xn (V) :
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Bernstein polynomials on [0, 1]* (d = 1)
For g : [0,1] — R define Bernstein polynomials
B (g9)(x

n

Zg< )Ckkl—fﬂ) _k=Zg(§)wk( ), z€]0,1], n>1

k=0

o Let g € C™[0,1], then B,(g) — g in C™[0,1] as n — oo

o Moreover, if g, — g € C™[0, 1], then B, (gr) — g in C™[0,1] as k,n — oo
(For d > 1 see e.g. Veretennikov '16)

For v € My([0,1]) take

Xn(¥) = v in M;([0,1])

(g, xn(v)) =

o>



Approximation of F' € C** (M ([0, 1]9)) (d = 1)

Define for F’
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Approximation of F' € C** (M ([0, 1]9)) (d = 1)

k=0
Define for F’
Fo(v) == F(xn(v)) = u({p1,v),. .., (@n,v))
Denote
F'(v; ) :5F(l/) () = lim F(v+ed,)— F(v) _ OF (v + €04)
ov e—0+ e Oe =0

o>



Approximation of F' € C** (M ([0, 1]9)) (d = 1)

[ Define for F’

Denote

, OF (v . Flw+ed,)—F(v OF (v + €0,
Fv;z) = 61(/ )(w) - sli%lJr ( E) = - (VOE ) £=0

Using xn (v +€d2) = Xn (V) + 305, @k(x)zs%, we have
5%5”) = ZF/ (Xn(l/)§ k) wr = Bn (F/(Xn(y);~)) N F'(y;.) in Cz[o7 1]

n
k=0

o = = = = o>



Approximation of F' € C** (M ([0, 1]9)) (d = 1)

[ Define for F’

Denote

F'(v;x) = (z) = lim =
Using xn (v + €02) = xn(v) + € X 1_y ¥k(2)dx, we have

5F§V(V) =27 (Xn(V); S) pr = Bo (F'(xn(v);) = F'(v;) in C[0,1]
k=0

Similarly, *2) = B, @ Bu(F" (xu (1v):+.)) = F/(v5-,-) in (C[0,1])°.

o & = = =

o>



Approximation of F' € C** (M ([0, 1]9)) (d = 1)

Let V(C) = {v € Ms([0,1]) : »([0,1]) < C} and F € C>™(M;([0,1])). De-
fine F,, = F o x». Then

o Then F,, — F uniformly on N/ (C);
o 751:;1,(”) — —‘”;fj”) in C™[0, 1] uniformly on N(C);

o % — % in (C™[0,1])? uniformly on A/ (C).

o = = = = o>



Set

Approximation of F' € C* (M(R)) (d = 1)

Oy (v)(dz) := ¢ (x)v(dz),
If supp v C [a,b], then 0y : My(R) — My ([a,b])

ve Mf(R)
Let v, be a sequence of smooth uniformly (in  and n) bounded function on R
such that ¥, — 1 in C"™(R). Then for all v € M¢(R)

F(by, (v)) = F(v);
SF(0y, (v)) O6F(v) BB
(;pu R C(R);
82F(0y, (v)) 6*F(v) . m 2,
o), THE) 5 (cmmyy

A



Approximation of F' € C* (M(R)) (d = 1)

Set
0y (v)(dx) := Y(z)v(dx), v e M;(R)
If supp v C [a,b], then 0y : My(R) — My ([a,b])

Lemma

Let v, be a sequence of smooth uniformly (in  and n) bounded function on R
such that ¥, — 1 in C"™(R). Then for all v € M¢(R)

(0, (v) = F);
5P 0y, (v)) _, SF(¥)

ov ov n C"(R);
82F(0y, (v)) 6*F(v) . m 2,
s, 0 i (cnm

The approximation sequernce for F' € C*™ (M (R)) is

Fu(v) = FOA™" (00, (1)), v € M;(R),
where ¥ is defined similatly as y, but on M;([a,b]), n — 1 in C(R),
[an,bn] T R.

\ ] =1 = = = ')




Particle systems with singular interaction. Wasserstein
diffusion

Dean-Kawasaki equation with “non-smooth” interaction:

%ut =T(ue) +V- (x/szWt>



Particle systems with singular interaction. Wasserstein
diffusion

Dean-Kawasaki equation with “non-smooth” interaction:

8 .
= D) + V- (\//TtWt>
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Particle systems with singular interaction. Wasserstein
diffusion

Dean-Kawasaki equation with “non-smooth” interaction
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Particle systems with singular interaction. Modified Arratia
flow
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Particle systems with singular interaction. Modified Arratia
flow

Dean-Kawasaki equation with “non-smooth” interaction:

B . :
e =) + V- (Vi)

1. . "
D) = iA,u,j, where uf = Z Oz
TEsupp pt

Modified Arratia flow: K. '14

Coalescing-Fragmentating Wasserstein Dynamics: K., von Renesse '17
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