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1 Introduction and main result

This paper is devoted to the existence, uniqueness and structure of solutions
to the Dean-Kawasaki equation

dµt =
α

2
∆µtdt+∇ ·

(
µt∇

δF (µt)

δµt

)
dt+∇ · (√µtdWt) , (1)

which appears in macroscopic fluctuation theory or models for glass dynamics
in non-equilibrium statistical physics [2, 3, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20,
21, 26, 27, 29, 30, 32, 33, 34]. Here dW denotes a space-time white noise vector

field and δF (µ)
δµ denotes the functional derivative of F .

Extending our previous result for the non-interacting case in [23], we show
that for smooth potentials F measure-valued solutions to (1) exist only for a
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discrete range of parameters α in which case the solution is given in terms of
a finite particle system.

The precise definition of a (weak martingale) solution to (1) and our main
result read as follows.

Definition 1 A continuous MF (Rd)-valued process µt is a solution to equa-
tion (1), if for each ϕ ∈ C2

b(Rd) the process

Mϕ(t) := 〈ϕ, µt〉 −
∫ t

0

[
α

2
〈∆ϕ, µs〉+

〈
∇ϕ · ∇δF (µs)

δµs
, µs

〉]
ds, t ≥ 0,

is a continuous martingale with respect to the filtration Ft := σ(µs, s ∈ [0, t]),
t ≥ 0, with the quadratic variation

[Mϕ]t =

∫ t

0

〈
|∇ϕ|2 , µs

〉
ds, t ≥ 0. (2)

Let C2,2
b (MF (Rd)) denote the space of twice continuously differentiable

functions on MF (Rd), which are bounded on the subsets {µ ∈ MF (Rd) :
µ(Rd) ≤ C}, C > 0, together with their derivatives. For the precise definition
of C2,2

b (MF (Rd)) see Section 2.

Theorem 1 (Existence and uniqueness of solutions to the Dean-
Kawasaki equation) Let ν ∈MF (Rd), b := ν(Rd) 6= 0 and F ∈ C2,2

b (MF (Rd)).
Then Dean-Kawasaki equation (1) has a (unique in law) solution µt, t ≥ 0,
starting from ν, i.e. µ0 = ν, if and only if bα =: n ∈ N and ν = b

n

∑n
i=1 δxi

for some xi ∈ Rd, i ∈ [n] := {1, . . . , n}. Moreover,

µt =
b

n

n∑
i=1

δXi(t), t ≥ 0,

where X(t) = (X1(t), . . . , Xn(t)), t ≥ 0, is a (unique) solution to the equation

dXi(t) = −∇δF (µt)

δµt
(Xi(t))dt+

√
n

b
dwi(t), i ∈ [n],

with X(0) = (x1, . . . , xn), and wi(t), t ≥ 0, i ∈ [n], are independent standard
Wiener processes on Rd.

We remark that the statement above is false for completely arbitrary drift
F , since Dean-Kawasaki models with singular drift admitting complex solu-
tions are known e.g. [36] and [1, 22, 24, 25, 28, 31] both in case of α > 0 or
α = 0, respectively. We also note that the regularised versions of the Dean-
Kawasaki equation can admit non-trivial solutions (see, e.g. [5, 4, 13]).

Contents of the paper. The proof of our main theorem is based on a reduc-
tion to the simpler case when F = 0, which was treated in [23], by means of
a Girsanov transform which is combined with an appropriate Itô formula for
F (µ). The latter is obtained by means of an explicit approximation of smooth
functionals F by simple cylindrical functionals in terms of measure-valued
versions of Bernstein polynomials, which is given in the appendix and which
might be of independent mathematical interest.
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2 Preliminaries

Let C(K) be the space of continuous functions on a closed subset K of Rd,
Usually, K will be a rectangle [a, b]d or Rd. The set of bounded continuous
functions on K is denoted by Cb(K). For m ∈ N we define by Cm(K) the
space of m times continuously differentiable functions on the interior of K and
which can be extended to continuous functions on K. We say that f is smooth
on K if it belongs to Cm(K) for all m ≥ 1. The set of smooth functions on K
is denoted by C∞(K). If l = (l1, . . . , ld) ∈ (N∪{0})d =: Nd0 and l 6= (0, . . . , 0),
then we will use the notation

∂|l|f

∂xl
=

∂l1+...+ldf

∂xl11 . . . ∂x
ld
d

for the corresponding derivative of f if it exists. We also set f ((0,...,0)) = f and
C0(K) := C(K). If K = [a, b]d, then we equip Cm(K) with the uniform norm
denoted by ‖ · ‖Cm(K). If K = Rd, the topology on Cm(K) is generated by the
seminorms of uniform convergence on compact sets.

We will denote the set of finite measures on K by MF (K) (or shortly
MF ). For each ϕ ∈ Cb(K) we set

〈ϕ, µ〉 :=

∫
Rd

ϕ(x)µ(dx).

We equip MF with the weak topology defined by

µn → µ in MF , n→∞, iff 〈ϕ, µn〉 → 〈ϕ, µ〉, n→∞, ∀ϕ ∈ Cb(K).

It is well known that such a topology is metrisable andMF is a Polish space.
We also remark that convergence of measures will be always understood in
this sense throughout the paper.

The following lemma can be easily obtained e.g. from the Prokhorov the-
orem (see e.g. Lemma 16.15 in [18]).

Lemma 1 If K is a compact set, then for each C > 0 the set NC(K) := {µ ∈
MF (K) : µ(K) ≤ C} is compact in MF (K).

Let C(MF ) be the set of continuous functions from MF (K) to R.
If K is compact, we equip the space C(MF (K)) with the topology of

uniform convergence on compact sets NC(K), C > 0. Then one can prove
that C(MF (K)) is a Polish space.

A function F ∈ C(MF (K)) is said to be differentiable if for every µ ∈
MF (K)

F ′(µ;x) :=
δF (µ)

δµ
(x) :=

∂

∂ε
F (µ+ εδx)|ε=0 = lim

ε→0+

F (µ+ εδx)− F (µ)

ε
.

exists for each x ∈ K and belongs to C(K). The set of functions for which
F ′(µ;x) is jointly continuous in µ and x is denoted by C1(MF ).
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Similarly, we can define the second order derivative. So, the second deriva-
tive of a function F ∈ C(MF ) is defined by

F ′′(µ;x, y) :=
δ2F (µ)

δµ2
(x, y) :=

∂2

∂ε1∂ε2
F (µ+ ε1δx + ε2δy)|ε1=ε2=0,

if it exists for all x, y ∈ K and belongs to C(K2). The set of functions from
C1(MF ) for which F ′′(µ;x, y) is jointly continuous in µ, x and y is denoted
by C2(MF ). The notion of differentiable functions onMF was taken from [6,
Section 2].

We also set for m ∈ N ∪ {∞}

C1,m(MF ) =

F ∈ C1(MF ) :
F ′(µ; ·) ∈ Cm(K) ∀µ ∈MF

and its derivatives (w.r.t. x)
are jointly continuous in µ, x


and

C2,m(MF ) =

F ∈ C1,m(MF ) ∩ C2(MF ) :
F ′′(µ; ·) ∈ Cm(K2) ∀µ ∈MF

and its derivatives (w.r.t. x, y)
are jointly continuous in µ, x, y


Let C0,m(MF ) := C(MF ) for each m ∈ N ∪ {∞}.

We denote by C2,m
b (MF ) the set of functions F from C2,m(MF ) such that

for each C > 0 F , F ′ and F ′′ together with their derivatives up to the order
m are bounded on NC(MF (K)), NC(MF (K))×K and NC(MF (K))×K2,
respectively.

3 Itô formula for the Dean-Kawasaki equation

Let MF :=MF (Rd) and F be a function from C2,2
b (MF ).

In this section, we are going to establish the Itô formula for a solution
to the Dean-Kawasaki equation (1). We recall that a continuous MF -valued
process µt is a solution to equation (1), if for each ϕ ∈ C2

b(Rd) the process

Mϕ(t) := 〈ϕ, µt〉 −
∫ t

0

[
α

2
〈∆ϕ, µs〉+

〈
∇ϕ · ∇δF (µs)

δµs
, µs

〉]
ds, t ≥ 0,

is a continuous martingale with respect to the filtration Ft := σ(µs, s ∈ [0, t]),
t ≥ 0, with the quadratic variation

[Mϕ]t =

∫ t

0

〈
|∇ϕ|2 , µs

〉
ds, t ≥ 0. (3)

Remark 1 Taking ϕ(x) = 1, x ∈ Rd, it is easy to see that 〈ϕ, µt〉 = 〈ϕ, µ0〉 for
all t ≥ 0. In particular, µt ∈ NC(Rd) for all t ≥ 0 if µ0 ∈ NC(Rd).
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Theorem 2 (Itô formula for the Dean-Kawasaki equation) For every
G ∈ C2,2

b (MF ) the following process

MG(t) := G(µt)−G(µ0)−
∫ t

0

[
α

2

〈
∆
δG(µs)

δµs
, µs

〉
+

〈
∇δG(µs)

δµs
· ∇δF (µs)

δµs
, µs

〉
+

1

2

〈∫
Rd

∇x · ∇y
δ2G(µs)

δµ2
s

δx(dy), µs

〉]
ds, t ≥ 0,

(4)

is a continuous (Ft)-martingale with the quadratic variation

[MG]t =

∫ t

0

〈∣∣∣∣∇δG(µs)

δµs

∣∣∣∣2 , µs
〉
ds, t ≥ 0.

Proof We first prove the theorem for a function G of the form

G(µ) = f (〈ϕ1, µ〉, . . . , 〈ϕn, µ〉) = f (〈ϕ, µ〉) , µ ∈MF , (5)

where f ∈ C2
b(Rd), ϕi, i ∈ {1, . . . , n}, are smooth functions on Rd with

compact supports and 〈ϕ, µ〉 := (〈ϕ1, µ〉, . . . , 〈ϕn, µ〉). By the Itô formula for
real valued semimartingales, we have

dG(µt) = df (〈ϕ1, µt〉, . . . , 〈ϕn, µt〉) =
α

2

n∑
i=1

∂f

∂zi
(〈ϕ, µt〉)〈∆ϕi, µt〉dt

+

n∑
i=1

∂f

∂zi
(〈ϕ, µt〉)

〈
∇ϕi · ∇

δF (µt)

δµt
, µt

〉
dt

+
1

2

n∑
i,j=1

∂2f

∂zi∂zj
(〈ϕ, µt〉) 〈∇ϕi · ∇ϕj , µt〉 dt+

n∑
i=1

∂f

∂zi
(〈ϕ, µt〉)dMϕi

(t).

Next, using the equalities

δG(µ)

δµ
(x) =

n∑
i=1

∂f

∂zi
(〈ϕ, µt〉)ϕi(x), µ ∈MF , x ∈ Rd,

and

δ2G(µ)

δµ2
(x, y) =

n∑
i,j=1

∂2f

∂zi∂zj
(〈ϕ, µt〉)ϕi(x)ϕj(y), µ ∈MF , x, y ∈ Rd,

it is easy to see that

dG(µt) =
α

2

〈
∆
δG(µt)

δµt
, µt

〉
dt+

〈
∇δG(µt)

δµt
· ∇δF (µt)

δµt
, µt

〉
dt

+
1

2

〈∫
Rd

∇x · ∇y
δ2G(µt)

δµ2
t

δx(dy), µt

〉
dt+

n∑
i=1

∂f

∂zi
(〈ϕ, µt〉)dMϕi

(t).
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Moreover, the quadratic variation of MG(t), t ≥ 0, the martingale part of
G(µt), t ≥ 0, is equal to

[MG]t =

∫ t

0

n∑
i,j=1

∂f

∂zi
(〈ϕ, µs〉)

∂f

∂zj
(〈ϕ, µs〉) 〈∇ϕi · ∇ϕj , µs〉 ds

=

∫ t

0

〈∣∣∣∣∇δG(µs)

δµs

∣∣∣∣2 , µs
〉
ds.

Thus, the Itô formula holds for any function G given by (5).

Next, by Theorem 5 and Remark 6, there exists a sequence {Gn}n≥1 of
functions of the form (5) such that for all µ ∈MF

Gn(µ)→ G(µ), n→∞,

δGn(µ)

δµ
→ δG(µ)

δµ
in C2(Rd), n→∞,

and

δ2Gn(µ)

δµ2
→ δ2G(µ)

δµ2
in C2(R2d), n→∞,

Moreover, Gn, δGn(µ)
δµ and δ2Gn(µ)

δµ2 and their derivatives (by x and y) are uni-

formly bounded (in n) onNC(MF (Rd)),NC(MF (Rd))×Rd andNC(MF (Rd))× R2d,
respectively. This implies that for each µ ∈MF〈

∆
δGn(µ)

δµ
, µ

〉
→
〈

∆
δG(µ)

δµ
, µ

〉
, n→∞,

〈
∇δGn(µ)

δµ
· ∇δF (µ)

δµ
, µ

〉
→
〈
∇δG(µ)

δµ
· ∇δF (µ)

δµ
, µ

〉
, n→∞,

〈∫
Rd

∇x · ∇y
δ2Gn(µ)

δµ2
δx(dy), µ

〉
→
〈∫

Rd

∇x · ∇y
δ2G(µ)

δµ2
δx(dy), µ

〉
, n→∞,

and 〈∣∣∣∣∇δGn(µ)

δµ

∣∣∣∣2 , µ
〉
→

〈∣∣∣∣∇δG(µ)

δµ

∣∣∣∣2 , µ
〉
, n→∞,

by the dominated convergence theorem.

Using the uniform boundedness of Gn and its derivatives, Remark 1 and
the dominated convergence theorem, we obtain that the Itô formula for G is
also valid. The theorem is proved.
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4 Girsanov’s transformation and proof of the main result

We assume that a solution µt, t ≥ 0, to equation (1) is a canonical process
on the filtered probability space (Ω,F , (Ft)t≥0,P), where Ω is the space of
continuous functions from [0,+∞) to MF := MF (Rd), P is the distribution
of the process µt, t ≥ 0, (Ft)t≥0 is the right-continuous and complete induced
filtration generated by µt, t ≥ 0, and F = ∨t≥0Ft. We remark that such a
filtration exists by Lemma 7.8 in [18].

Now, letN(t), t ≥ 0, be a continuous nonnegative martingale withN(0) = 1.
We consider a new measure on (Ω,F) defined as

dPN := N(t)dP on Ft, t ≥ 0,

that is, PN (A) =
∫
A
N(t)dP, A ∈ Ft, which exists by Lemma 18.18 in [18].

Next we take any function G from C2,2
b (MF ) and note that

EG(t) := eM
G(t)− 1

2 [M
G]t , t ≥ 0,

is a continuous (Ft)-matringale with EG(0) = 1, by Novikov’s theorem (see
Theorem 18.23 [18]). Here MG is given by (4). So, we can define the measure
PG := PEG on (Ω,F), that is,

dPG := EG(t)dP = eM
G(t)− 1

2 [M
G]tdP on Ft, t ≥ 0. (6)

Theorem 3 (Girsanov’s transformation for solutions to the Dean-
Kawasaki equation) Let G be a function from C2,2

b (MF ) and PG be defined
by (6). Then the process µt, t ≥ 0, solves the equation

dµt =
α

2
∆µtdt+∇ ·

(
µt∇

δ(F +G)(µt)

δµt

)
dt+∇ · (√µtdWt)

on the probability space (Ω,F ,PG). In particular, µt, t ≥ 0, is a solution to
the equation

dµt =
α

2
∆µtdt+∇ · (√µtdWt)

on (Ω,F ,PG), if G = −F .

Proof To prove the statement, we use Girsanov’s transformation (see e.g. The-
orem 18.19 and Lemma 18.21 [18]) and Theorem 2. So, we take a function
ϕ ∈ Cb(Rb) and compute the joint quadratic variation [Mϕ,M

G]t using The-
orem 2. The polarisation equality implies

[Mϕ,M
G]t =

∫ t

0

〈
∇ϕ · ∇δG(µs)

δµs
, µs

〉
ds, t ≥ 0.

Thus, by Theorem 18.19 and Lemma 18.21 in [18], the process

Mϕ(t)−[Mϕ,M
G]t = 〈ϕ, µt〉−

∫ t

0

[
α

2
〈∆ϕ, µs〉+

〈
∇ϕ · ∇δ(F +G)(µs)

δµs
, µs

〉]
ds

is a continuous (Ft)-martingale on (Ω,F ,PG) with the quadratic variation
given by (3).
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Proof (Proof of Theorem 1) We assume that µt, t ≥ 0, is a solution to the
Dean-Kawasaki equation. Applying Theorem 3 for G = −F , we obtain that
µt, t ≥ 0, must solve the equation

dµt =
α

2
∆µtdt+∇ · (√µtdWt) (7)

on the space (Ω,F ,P−F ). By a simple computation, it is easy to see that the
process µ̃t := 1

bµbt, t ≥ 0, is a solution to (7) with the parameter bα instead
of α. Moreover, µ̃t, t ≥ 0, takes values in the space of probability measures
on Rd. Hence, by Theorem 1 in [23], βα = n ∈ N and there exists a family of
Rd-valued processes X̃i(t), t ≥ 0, such that

µ̃t =
1

n

n∑
i=1

δX̃i(t),

with X̃i(t) = xi + w̃i(nt), t ≥ 0, i ∈ [n], and w̃i(t), t ≥ 0, i ∈ [n], are standard
independent (Ft)-Wiener processes on Rd. This implies that

µt =
b

n

n∑
i=1

δX̃i( t
b ) =

b

n

n∑
i=1

δXi(t),

where Xi(t) = X̃i
(
t
b

)
= xi + w̃i

(
nt
b

)
, t ≥ 0.

Next, we note that the process N(t) := −MG(t) + [MG]t, t ≥ 0, is a con-
tinuous (Ft)-martingale on (Ω,F ,PG), by Girsanov’s transformation. Thus,
we can consider the following transformation of measure PG given by

dP̃ := eN(t)− 1
2 [N ]tdPG = dP on Ft, t ≥ 0.

Thus, applying Girsanov’s theorem to Xi(t), t ≥ 0, i ∈ [n], on (Ω,F ,PG), we
obtain that

Ri(t) := Xi(t) + [MG, Xi]t = Xi(t) +

∫ t

0

∇δF (µs)

δµs
(Xi(s))ds, t ≥ 0,

are Rd-valued continuous (Ft)-martingales on (Ω,F , P̃ = P) for all i ∈ [n]
and [Ri, Rj ]t = n

b II{i=j}, t ≥ 0, i, j ∈ [n], where I denotes the identity d × d
matrix.

The uniqueness also trivially follows from Girsanov’s transformation.

Example 1 We assume that V1, V2 ∈ C2
b(Rd), V1(x) = V1(−x), x ∈ Rd, and

take

F (µ) :=
1

2

∫
Rd

∫
Rd

V1(x− y)µ(dx)µ(dy) +

∫
Rd

V2(x)µ(dx), µ ∈MF (Rd).

In this case,

δF (µ)

δµ
(x) =

∫
Rd

V1(x− y)µ(dy) + V2(x), µ ∈MF (Rd), x ∈ Rd,
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and
δ2F (µ)

δµ2
(x, y) = V1(x− y), µ ∈MF (Rd), x, y ∈ Rd.

Then the Dean-Kawasaki equation for interacting Brownian particles has a
form

dµt =
α

2
∆µtdt+∇·

(
µt

∫
Rd

∇V1(· − y)µt(dy)

)
dt+∇·(µt∇V2) dt+∇·(√µtdWt) ,

where V1 plays a role of a two-body interaction potential between particles
and V2 is an external potential (see e.g. [2, 8, 9, 11, 14, 17, 26]).

Since F ∈ C2,2
b (MF (Rd)), the Dean-Kawasaki equation has a (unique in

law) solution if and only if bα = n ∈ N and µ0 = b
n

∑n
i=1 δxi for some xi ∈ Rd,

i ∈ [n], where b = µ0(Rd), by Theorem 1. Moreover,

µt =
b

n

n∑
i=1

δXi(t), t ≥ 0,

where the family Xi(t), t ≥ 0, i ∈ [n], solves the equation

dXi(t) = − b
n

n∑
j=1

∇V1(Xi(t)−Xj(t))dt+∇V2(Xi(t))dt+

√
n

b
dwi(t), i ∈ [n].

A Approximation of differentiable functions on MF (Rd)

A.1 Approximation of differentiable functions on MF ([a, b]d)

In this section, we fix a, b ∈ R, a < b, and denote K := [a, b]d and MF := MF ([a, b]d),
for convenience of notation. We remark that each function from C(MF ) is bounded on
NC := NC(K) = {µ ∈MF : µ(K) ≤ C} for all C > 0, since NC is compact in MF .

We are going to introduce an analog of the Weierstrass approximation of functions
from Ck,m(MF ). For this we use multiplicative Bernstein polynomials on K = [a, b]d (see
e.g. [35]). Let g ∈ C(K). We set for n ≥ 1

Bn(g)(x) =

n∑
j1,...jd=0

g
(
anj1,...,jd

)
ϕnj1,...,jd (x), x ∈ K,

where

anj1,...,jd =

(
a+

j1(b− a)

n
, . . . , a+

jd(b− a)

n

)
and

ϕnj1,...,jd (x) =
1

(b− a)d

d∏
k=1

C
jk
n (xk − a)jk (b− xk)n−jk , x ∈ K.

Here Cin = n!
i!(n−i)! .

We will consider Bn, n ≥ 1, as linear operators from Cm(K) to Cm(K).

Proposition 1 Let m ∈ N0. Then the family of linear operators Bn : Cm(K) → Cm(K),
n ∈ N, satisfies the following properties:

(B1) {Bn}n≥1 is a family of uniformly bounded linear operators on Cm(K);
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(B2) For each g ∈ Cm(K) and l ∈ Nd0, |l| ≤ m,

∂|l|

∂xl
Bn(g)→

∂|l|

∂xl
g in C(K), as n→∞,

that is, Bn(g)→ g in Cm(K), as n→∞.
(B3) If gk → g in Cm(K), k →∞, then for each l ∈ Nd0, |l| ≤ m,

∂|l|

∂xl
Bn(gk)→

∂|l|

∂xl
g in C(K), as n, k →∞,

that is, Bn(gk)→ g in Cm(K), as n, k →∞.

Proof For K = [0, 1]d Property (B2) was proved in [35]. The general case can be obtained
by the rescaling. Next, for each g ∈ Cm(K) Property (B2) implies the boundedness of
{‖Bn(g)‖Cm(K)}n≥1. By the Banach-Steinhaus theorem, we obtain (B1). Property (B3)
easily follows from (B1) and (B2).

Now, we introduce an analog of Bernstein polynomials onMF . We set for each µ ∈MF

χn(µ) :=
n∑

j1,...,jd=0

〈
ϕnj1,...,jd , µ

〉
δanj1,...,jd

, n ≥ 1,

where δc is the point measure at c ∈ Rd, i.e. δc(A) equals 1 if c ∈ A and 0 otherwise. We
also define for every F ∈ C(MF )

Pn(F )(µ) := F (χn(µ)) , µ ∈MF , n ≥ 1. (8)

Setting

uFn (z) := F

 n∑
j1,...,jd=0

zj1,...,jdδanj1,...,jd

 , z ∈ [0,∞)(n+1)d ,

it is easy to see that uFn ∈ C
(

[0,∞)(n+1)d
)

and

Pn(F )(µ) = uFn

((〈
ϕnj1,...,jd , µ

〉)n
j1,...,jd=0

)
, µ ∈MF , n ≥ 1. (9)

We will denote by id the identity map on MF , that is, id(µ) = µ, µ ∈MF .

Proposition 2 For each n ≥ 1 the map χn : MF → MF is continuous and for each
sequence {µk}k≥1 converging µ inMF one has χn(µk)→ µ inMF as n, k →∞. Moreover,
χn maps NC to NC for all C > 0 and n ≥ 1.

Remark 2 Since the set NC = {µ ∈MF : µ(K) ≤ C} is compact inMF , we have that for
each C > 0 χn → id uniformly on NC as n→∞, by Proposition 2.

Remark 3 Proposition 2 implies that Pn is a linear map from C(MF ) to C(MF ).

Proof (Proof of Proposition 2) The continuity of χn is trivial. We take an arbitrary sequence
{µk}k≥1 in MF which converges to µ and g ∈ C(K). Then by Proposition 1,

〈g, χn(µk)〉 =

n∑
j1,...,jd=0

g
(
anj1,...,jd

)〈
ϕnj1,...,jd , µk

〉

=

〈
n∑

j1,...,jd=0

g
(
anj1,...,jd

)
ϕnj1,...,jd , µk

〉
= 〈Bn(g), µk〉 → 〈g, µ〉, n, k →∞,
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since the map C(K)×MF 3 (g, µ) 7→ 〈g, µ〉 ∈ R is continuous.
Due to the equality

χn(µ)(K) =

n∑
j1,...,jd=0

〈
ϕnj1,...,jd , µ

〉
=

〈
n∑

j1,...,jd=0

ϕnj1,...,jd , µ

〉
= 〈1, µ〉 = µ(K),

χn maps NC to NC .

Proposition 3 For each F ∈ C(MF ) and C > 0 we have that Pn(F ) → F uniformly on
NC as n→∞, that is,

sup
µ∈NC

|Pn(F )(µ)− F (µ)| → 0, n→∞.

Remark 4 Proposition 3 yields that for each F ∈ C(MF ) Pn(F )→ F in C(MF ) as n→∞.

Proof (Proof of Proposition 3) We assume that the statement is not true. Then there exist
ε > 0 and a sequence {µn}n≥1 in NC such that |Pn(F )(µn)−F (µn)| ≥ ε for all n ≥ 1. Since
NC is compact, we may assume that µn → µ without loss of generality. But by Proposition 2
and the continuity of F , we have

Pn(F )(µn)− F (µn) = F (χn(µn))− F (µn)→ F (µ)− F (µ) = 0, n→∞,

which contradicts the assumption.

We note that the space C(NC) of continuous functions from NC to R furnished with
the uniform norm is a Banach space. It is easy to see that for each n ≥ 1 the map Pn is a
continuous linear operator from C(NC) to C(NC). Indeed, the map χn maps NC to NC ,
by Proposition 2. The continuity trivially follows from the form of Pn (see (8)).

Corollary 1 The family {Pn}n≥1 of linear operators on C(NC) is uniformly bounded.

Proof The corollary immediately follows from Proposition 3 and the Banach-Steinhaus the-
orem.

Lemma 2 Let F ∈ Ck(MF ) for some k ∈ {1, 2}. Then the function uFn belongs to

Ck
(

[0,∞)(n+1)d
)

. Moreover,

∂

∂zi1,...,id
uFn (z) = F ′

 n∑
j1,...,jd=0

zj1,...,jdδanj1,...,jd
; ani1,...,id

 , z ∈ [0,∞)(n+1)d ,

for all i1, . . . , id and

∂2

∂zj1,...,jd∂zi1,...,id
uFn (z) = F ′′

 n∑
l1,...,ld=0

zl1,...,ldδanl1,...,ld
; anj1,...,jd , a

n
i1,...,id

 , z ∈ [0,∞)(n+1)d ,

for all j1, . . . , jd, i1, . . . , id, if k = 2.

Proof The proof easily follows from the definition of F ′ and F ′′.

Proposition 4 Let F ∈ Ck,m(MF ) for some k ∈ {1, 2} and m ≥ 0. Then for every n ≥ 1
Pn(F ) ∈ Ck,∞ and for each µ ∈MF , x, y ∈ K

P ′n(F )(µ;x) =

n∑
j1,...,jd=0

F ′
(
χn(µ); anj1,...,jd

)
ϕnj1,...,jd (x)

=
n∑

j1,...,jd=0

Pn
(
F ′
(
·; anj1,...,jd

))
(µ)ϕnj1,...,jd (x).



12 Vitalii Konarovskyi et al.

and if k = 2

P ′′n (F )(µ;x, y) =

n∑
j1,...,jd=0

n∑
i1,...,id=0

F ′′
(
χn(µ); anj1,...,jd , a

n
i1,...,id

)
ϕnj1,...,jd (x)ϕni1,...,id (y)

=
n∑

j1,...,jd=0

n∑
i1,...,id=0

Pn
(
F ′′
(
·; anj1,...,jd , a

n
i1,...,id

))
(µ)ϕnj1,...,jd (x)ϕni1,...,id (y).

Proof The proposition follows from the definition of the derivatives F ′, F ′′, equality (9)
and Lemma 2. Indeed,

P ′n(F )(µ;x) =

n∑
j1,...,jd=0

∂

∂zj1,...,jd
uFn

((〈
ϕnj1,...,jd , µ

〉)n
j1,...,jd=0

)
ϕnj1,...,jd (x)

=
n∑

j1,...,jd=0

Pn
(
F ′
(
·; anj1,...,jd

))
(µ)ϕnj1,...,jd (x).

Similarly, one can obtain the equality for P ′′n (F )(µ;x, y).

Theorem 4 Let F ∈ Ck,m(MF ) for some k ∈ {1, 2} and m ≥ 0. Then for each l, l̃ ∈ Nd0,

|l|+ |l̃| ≤ m and C > 0 one has

sup
x∈K, µ∈NC

∣∣∣∣∣∂|l|∂xl
P ′n(F )(µ;x)−

∂|l|

∂xl
F ′(µ;x)

∣∣∣∣∣→ 0, n→∞. (10)

and if k = 2

sup
x,y∈K, µ∈NC

∣∣∣∣∣∂|l|∂xl
∂|l̃|

∂yl̃
P ′′n (F )(µ;x, y)−

∂|l|

∂xl
∂|l̃|

∂yl̃
F ′′(µ;x, y)

∣∣∣∣∣→ 0, n→∞. (11)

Proof We will prove the theorem similarly as Proposition 3. We start with (10). If (10) does
not hold, then there exist ε > 0 and sequences {µn}n≥1 ⊂ NC , {xn}n≥1 ∈ K such that∣∣∣∣∣∂|l|∂xl

P ′n(F )(µn;xn)−
∂|l|

∂xl
F ′(µn;xn)

∣∣∣∣∣ ≥ ε (12)

for all n ≥ 1. Since NC and K are compact sets, we may assume that µn → µ0 and xn → x0
as n→∞, without loss of generality. So, we compute

∂|l|

∂xl
P ′n(F )(µn;xn) =

∂|l|

∂xl

n∑
j1,...,jd=0

F ′
(
χn(µn); anj1,...,jd

)
ϕnj1,...,jd (xn)

=
∂|l|

∂xl
Bn
(
F ′ (χn(µn); ·)

)
(xn)

Since F ′ is continuous onMF ×K and K is compact, it is easy to see that F ′(χn(µn); ·)→
F ′(µ0; ·) in C(K) as n→∞, using Proposition 2. Thus, by Proposition 1 (B3),

∂|l|

∂xl
P ′n(F )(µn;xn) =

∂|l|

∂xl
Bn
(
F ′ (χn(µn); ·)

)
(xn)→

∂|l|

∂xl
F ′ (µ0;x0) , n→∞,

that contradicts (12).
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The uniform convergence (11) can be proved by the same argument taking into an
account that

∂|l|

∂xl
∂|l̃|

∂yl̃
P ′′n (F )(µ;x, y)

=
∂|l|

∂xl
∂|l̃|

∂yl̃

n∑
j1,...,jd=0

n∑
i1,...,id=0

F ′′
(
χn(µn); anj1,...,jd , a

n
i1,...,id

)
ϕnj1,...,jd (x)ϕni1,...,id (y)

=
∂|l|

∂xl
∂|l̃|

∂yl̃
B̃n
(
F ′′ (χn(µn); ·, ·)

)
(x, y),

where B̃n, n ≥ 1, are the Bernstein polynomials defined for functions from C(K2).

A.2 Approximation of differentiable functions on MF (Rd)

We fix a smooth bounded function ψ : Rd → R and define a map fromMF (Rd) toMF (Rd)
as follows

ϑψ(µ)(dx) := ψ(x)µ(dx).

We also assume that ψ has a compact support. Let K = [a, b]d such that suppψ ⊂ K.
Then the measure ϑψ(µ) is supported on K and, consequently, we can consider ϑψ as a map

from MF (Rd) to MF (K) ⊂MF (Rd).

Lemma 3 The map ϑψ :MF (Rd)→MF (K) is continuous.

Proof The proof trivially follows from the definition of ϑψ .

We define for each F ∈ C(MF (K)) a new function as follows

Γψ(F )(µ) := Γψ,K(F )(µ) := F (ϑψ(µ)), µ ∈MF (Rd).

Lemma 4 If F ∈ Ck,m(MF (K)) for some k ∈ {0, 1, 2} and m ≥ 0, then Γψ(F ) ∈
Ck,m(MF (Rd)). Moreover,

Γ ′ψ(F )(µ;x) = Γψ(F ′(·;x))(µ)ψ(x) = F ′(ϑψ(µ);x)ψ(x), µ ∈MF (Rd), x ∈ Rd,

and

Γ ′′ψ (F )(µ;x) = Γψ(F ′′(·;x, y))(µ)ψ(x)ψ(y) = F ′′(ϑψ(µ);x, y)ψ(x)ψ(y), µ ∈MF (Rd), x ∈ Rd.

Remark 5 We remark that ψ(x) = 0 for all x ∈ Kc := Rd \ K, thus, we assume that the
multiplication f(x)ψ(x) = 0, even if f is not defined for such x.

Proof (Proof of Lemma 4) The continuity of Γψ(F ) immediately follows from Lemma 3.
The derivatives of Γψ(F ) can be computed using the following observation

Γψ(F )(µ+ εδx) = F (ϑψ(µ) + εψ(x)δx), µ ∈MF (Rd), x ∈ Rd, ε > 0.

Lemma 5 Let {ψn}n≥1 be a sequence of uniformly bounded continuous functions on Rd
which pointwise converges to ψ ∈ Cb(R), then ϑψn (µ)→ ϑψ(µ), n→∞, for each µ ∈MF .

Proof The lemma easily follows from the dominated convergence theorem.
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Proposition 5 Let F ∈ Ck,m(MF (Rd)) for some k ∈ {0, 1, 2} and m ≥ 0. Let {ψn}n≥1

be a sequence of smooth bounded functions on Rd such that ψn → ψ in Cm(Rd), n → ∞,
and {ψn}n≥1 is uniformly bounded. Then for each µ ∈MF (Rd)

Γψn (F )(µ)→ Γψ(F )(µ), n→∞,

Γ ′ψn
(F )(µ; ·)→ Γ ′ψ(F )(µ; ·) in Cm(Rd), n→∞, if k ≥ 1,

and
Γ ′′ψn

(F )(µ; ·)→ Γ ′′ψ (F )(µ; ·) in Cm(R2d), n→∞, if k = 2.

Proof We first note that F ′(µn; ·) → F ′(µ; ·) in Cm(Rd) and F ′′(µn; ·) → F ′′(µ; ·) in
Cm(R2d) as µn → µ, if F ∈ C2,m(MF (Rd)). Thus, the statement immediately follows from
lemmas 4 and 5.

We denote by CkP (MF (Rd)) the set of functions on MF (Rd) of the form

G(µ) = u(〈ϕ1, µ〉, . . . , 〈ϕp, µ〉), µ ∈MF (Rd),

where ϕi, i ∈ [p] = {1, . . . , p}, are positive smooth functions with compact supports,
u ∈ Ck([0,+∞)p) and p ∈ N.

Remark 6 We remark that a function belongs to Ck([0,+∞)p) if and only if it can be
extended to a function from Ck(Rp).

Let FK denote the restriction of a function F from C(MF (Rd)) to MF (K).

Lemma 6 For each F ∈ Ck,m(MF (Rd)) the function FK belongs to Ck,m(MF (K)) and

F ′K(µ;x) = F ′(µ;x), µ ∈MF (K), x ∈ K,

F ′′K(µ;x, y) = F ′(µ;x, y), µ ∈MF (K), x, y ∈ K.

Proof The proof of the lemma is trivial.

Theorem 5 Let F ∈ Ck,m(MF (Rd)) for some k ∈ {0, 1, 2} and m ≥ 0. Then there exists
a sequence {Fn}n≥1 from CkP (MF (Rd)) such that for all µ ∈MF (Rd)

Fn(µ)→ F (µ), n→∞,

F ′n(µ; ·)→ F ′(µ; ·) in Cm(Rd), n→∞, if k ≥ 1,

and
F ′′n (µ; ·)→ F ′′(µ; ·) in Cm(R2d), n→∞, if k = 2.

Moreover, if for some C > 0 the functions F , F ′ and F ′′ and their derivatives are
bounded on sets NC(MF (Rd)), NC(MF (Rd))×Rd and NC(MF (Rd))×R2d, respectively,
then the sequence {Fn}n≥1 can be chosen with {Fn}n≥1, {F ′n}n≥1, {F ′′n }n≥1 and their

derivatives uniformly bounded in n on NC(MF (Rd)), NC(MF (Rd)) × Rd and
NC(MF (Rd))× R2d, respectively.

Proof We assume that k = 2. Let ψn be a sequence of smooth functions on Rd such that
they take values from [0, 1], suppψn ⊂ Kn := [−n, n]d, ψn(x) = 1, x ∈ [−n + 1, n −
1]d, and all derivatives are uniformly bounded in x and n, i.e. for each l ∈ Nd0, the set{
∂|l|

∂xl
ψn(x), x ∈ Rd, n ≥ 1

}
is bounded. Let us fix a function F ∈ Ck,m(MF (Rd)). We

are going to approximate FKn by polynomials introduced in the previous section. So, by
Proposition 3 and Theorem 4, for every n ≥ 1 there exists a number Nn ∈ N such that

sup
µ∈Nn(Kn)

|FKn (µ)− PNn (FKn )(µ)| ≤
1

n
,
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sup
µ∈Nn(Kn)

∥∥F ′Kn
(µ; ·)− P ′Nn

(FKn )(µ; ·)
∥∥
Cm(Kn)

≤
1

n

and

sup
µ∈Nn(Kn)

∥∥F ′′Kn
(µ; ·)− P ′′Nn

(FKn )(µ; ·)
∥∥
Cm(K2

n)
≤

1

n
,

where Nn(Kn) is defined in Lemma 1 with C = n and K = Kn, and PNn is defined by (8)
for K = Kn.

We set Fn(µ) := Γψn (PNn (FKn )) (µ) = PNn (FKn )
(
ϑψn (µ)

)
, µ ∈MF (Rd). By Lemma 4,

Fn ∈ Ck,m(MF (Rd)). Moreover, it is easy to see that Fn ∈ CkP (MF (Rd)), by the definition
of PNn and Γψn .

Next, we are going to show that {Fn}n≥1 is the sequence which approximates F . We

fix ε > 0, µ ∈ MF (Rd) and a compact set K ⊂ Rd. We choose ñ ∈ N such that 1
ñ
< ε

2
,

K ⊂ Kñ, µ(Rd) ≤ ñ and for all n ≥ ñ∣∣F (µ)− Γψn (F )(µ)
∣∣ < ε

2
,

∥∥∥F ′(µ; ·)− Γ ′ψn
(F )(µ; ·)

∥∥∥
Cm(K)

<
1

ε

and ∥∥∥F ′′(µ; ·)− Γ ′′ψn
(F )(µ; ·)

∥∥∥
Cm(K2)

<
1

ε
.

Such ñ exists due to Proposition 5, since {ψn}n≥1 converges to the function ψ = 1 in

Cm(Rd). Let us remark that Γψn (F ) = Γψn (FKn ), Γ ′ψn
(F ) = Γ ′ψn

(FK) and Γ ′′ψn
(F ) =

Γ ′′ψn
(FK), by Lemma 6. So, now we can estimate for each n ≥ ñ

|F (µ)− Fn(µ)| ≤
∣∣F (µ)− Γψn (F )(µ)

∣∣+
∣∣Γψn (FKn )(µ)− Γψn (PNn (FKn )) (µ)

∣∣
≤
ε

2
+
∣∣FKn (ϑψn (µ))− PNn (FKn )(ϑψn (µ))

∣∣ ≤ ε

2
+

1

n
≤ ε,

since ϑψn (µ) ∈ Nn(Kn). Similarly, for each n ≥ ñ+ 1, we have∥∥F ′(µ; ·)− F ′n(µ; ·)
∥∥
Cm(K)

≤
∥∥∥F ′(µ; ·)− Γ ′ψn

(F )(µ; ·)
∥∥∥
Cm(K)

+
∥∥∥Γ ′ψn

(FKn )(µ; ·)− Γ ′ψn
(PNn (FKn )) (µ; ·)

∥∥∥
Cm(K)

≤
ε

2
+
∣∣F ′Kn

(ϑψn (µ); ·)ψn − P ′Nn
(FKn )(ϑψn (µ; ·))ψn

∥∥
Cm(K)

≤
ε

2
+

1

n
≤ ε,

since ψn(x) = 1 on K for all n ≥ ñ + 1. Analogously, ‖F ′′(µ; ·)− F ′′n (µ; ·)‖Cm(K2) < ε for

all n ≥ ñ+ 1. The theorem is proved.
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