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1 Introduction and main result

This paper is devoted to the existence, uniqueness and structure of solutions
to the Dean-Kawasaki equation

5F
dpy = % Apdt +V - (utvag‘t)) dt +V - (Vi dWy) (1)
t

which appears in macroscopic fluctuation theory or models for glass dynamics
in non-equilibrium statistical physics [2, 3, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20,
21, 26, 27, 29, 30, 32, 33, 34]. Here dW denotes a space-time white noise vector

field and M;—L“) denotes the functional derivative of F.

Extending our previous result for the non-interacting case in [23], we show
that for smooth potentials F' measure-valued solutions to (1) exist only for a
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discrete range of parameters o in which case the solution is given in terms of
a finite particle system.

The precise definition of a (weak martingale) solution to (1) and our main
result read as follows.

Definition 1 A continuous M p(R%)-valued process y; is a solution to equa-
tion (1), if for each p € CZ(R?) the process

My (t) = (o, ) — /Ot B@ ©, ) + <ch : VM(SEZS),MSH ds, t>0,

is a continuous martingale with respect to the filtration 7y := o(us, s € [0,¢]),
t > 0, with the quadratic variation

(M = /Ot <|V¢|2,us>ds7 t>0. (2)

Let Cp%(Mp(RY)) denote the space of twice continuously differentiable
functions on Mp(R%), which are bounded on the subsets {u € Mp(R?) :
w(R?Y) < C}, C > 0, together with their derivatives. For the precise definition
of C7*(Mp(R?)) see Section 2.

Theorem 1 (Existence and uniqueness of solutions to the Dean-
Kawasaki equation) Let v € Mp(R%), b:= v(R?) # 0 and F € C;*(Mp(RY)).
Then Dean-Kawasaki equation (1) has a (unique in law) solution py, t > 0,
starting from v, i.e. ug = v, if and only if ba =: n € N and v = %Z?:l Oy
for some z* € R, i € [n] := {1,...,n}. Moreover,

b n
Nt:EZlJXi(tﬁ t207

where X (t) = (X*(t),...,X"™(t)), t >0, is a (unique) solution to the equation
OF () [ i noo ,
X'(t))dt —dw'(t
) (xityat +[Fau' (0, i< Dl

with X(0) = (z,...,2"), and w'(t), t > 0, i € [n], are independent standard
Wiener processes on R®.

dX'(t) = -V

We remark that the statement above is false for completely arbitrary drift
F, since Dean-Kawasaki models with singular drift admitting complex solu-
tions are known e.g. [36] and [1, 22, 24, 25, 28, 31] both in case of & > 0 or
a = 0, respectively. We also note that the regularised versions of the Dean-
Kawasaki equation can admit non-trivial solutions (see, e.g. [5, 4, 13]).

Contents of the paper. The proof of our main theorem is based on a reduc-
tion to the simpler case when F = 0, which was treated in [23], by means of
a Girsanov transform which is combined with an appropriate Itd formula for
F(u). The latter is obtained by means of an explicit approximation of smooth
functionals F' by simple cylindrical functionals in terms of measure-valued
versions of Bernstein polynomials, which is given in the appendix and which
might be of independent mathematical interest.
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2 Preliminaries

Let C(K) be the space of continuous functions on a closed subset K of R?,
Usually, K will be a rectangle [a,b]¢ or R%. The set of bounded continuous
functions on K is denoted by Cy(K). For m € N we define by C™(K) the
space of m times continuously differentiable functions on the interior of K and
which can be extended to continuous functions on K. We say that f is smooth
on K if it belongs to C™(K) for all m > 1. The set of smooth functions on K
is denoted by C*°(K). If l = (I1,...,ls) € (NU{0})? =: Nd and [ # (0,...,0),
then we will use the notation

all\f 8ll+...+ldf
ozl dx't ... dxly

for the corresponding derivative of f if it exists. We also set f((%-20) = f and
COUK) := C(K). If K = [a,b]4, then we equip C™(K) with the uniform norm
denoted by || - ||cm (k). If K = R?, the topology on C™(K) is generated by the
seminorms of uniform convergence on compact sets.

We will denote the set of finite measures on K by Mp(K) (or shortly
Mp). For each ¢ € Cy(K) we set

(oun) = [ el@mtdo)
Rd
We equip Mg with the weak topology defined by
.un%ﬂin MF7 n — 00, it <Q07Nn>*><90au>7 n — oo, V(,DEC(,(K)-

It is well known that such a topology is metrisable and M p is a Polish space.
We also remark that convergence of measures will be always understood in
this sense throughout the paper.

The following lemma can be easily obtained e.g. from the Prokhorov the-
orem (see e.g. Lemma 16.15 in [18]).

Lemma 1 If K is a compact set, then for each C > 0 the set No(K) = {p €
Mp(K): p(K) < C} is compact in Mp(K).

Let C(Mp) be the set of continuous functions from Mp(K) to R.

If K is compact, we equip the space C(Mp(K)) with the topology of
uniform convergence on compact sets N¢(K), C > 0. Then one can prove
that C(Mp(K)) is a Polish space.

A function F € C(Mp(K)) is said to be differentiable if for every p €
Mp(K)

6F (n)

9 . F(u+ed,) — F(u)
e ) e — =
Fl(u;z) = 5 (z) := agF(,u + €6z)|e=0 sg%l+ . .

exists for each € K and belongs to C(K). The set of functions for which
F'(p; x) is jointly continuous in y and z is denoted by C'(Mp).
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Similarly, we can define the second order derivative. So, the second deriva-
tive of a function F' € C(Mp) is defined by

52F () 02
F// . — —
(,U,,£E7y) . 6/12 (:U,y) ° 861852

F(/J + 5151’ + 825y)|€1:62:01

if it exists for all z,y € K and belongs to C(K?). The set of functions from
CY(MF) for which F”(u;x,y) is jointly continuous in u, x and y is denoted
by C%(MFp). The notion of differentiable functions on Mp was taken from [6,
Section 2].

We also set for m € NU {oco}

F'(u;) € C™(K) Yu € Mp
Cl""(Mp) =< F € CY(Mp): and its derivatives (w.r.t. x)

are jointly continuous in pu,x

and

F"(u;-) € C™(K?) Yu € Mp
C*"™(Mp) =< F e C"(Mp)NC*(Mp) : and its derivatives (w.r.t. z,v)
are jointly continuous in u,x,y

Let C*™(Mp) := C(Mp) for each m € NU {oo}.

We denote by Cim(/\/lp) the set of functions F from C?™ (M) such that
for each C > 0 F, F’ and F” together with their derivatives up to the order
m are bounded on No(Mp(K)), No(Mp(K)) x K and No(Mp(K)) x K2,
respectively.

3 It6 formula for the Dean-Kawasaki equation

Let My := Mp(R?) and F be a function from C;*(Mp).

In this section, we are going to establish the It6 formula for a solution
to the Dean-Kawasaki equation (1). We recall that a continuous M p-valued
process fi; is a solution to equation (1), if for each ¢ € CZ(RY) the process

Mot) = o)~ [ [+ (v v W s i

is a continuous martingale with respect to the filtration F; := o(us, s € [0,1]),
t > 0, with the quadratic variation

M= [ Vel Y ds, 100 3)

Remark 1 Taking ¢(z) = 1, z € R%, it is easy to see that (o, u;) = (¢, po) for
all t > 0. In particular, u; € No(R?) for all t > 0 if py € No(R9).
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Theorem 2 (It6 formula for the Dean-Kawasaki equation) For every
G e Cg’Q(MF) the following process

- [ (55 ) (5.

</v v,2 2”5( Y), 8>}ds, >0,

(4)

is a continuous (F)-martingale with the quadratic variation

t 2
[MG]t:/ <’v5G5(”8) 7us>ds, t>0.
0 Hs

Proof We first prove the theorem for a function G of the form

G(u) = f({prsit)s -y (o) = fF({ps 1)) s € Mp, (5)

where f € CZ2(RY), ¢y, i € {1,...,n}, are smooth functions on R? with
compact supports and {p, 1) := ({©1, 1), ..., {@n, n)). By the It6 formula for
real valued semimartingales, we have

46080 = 0 (1), Gonod) = 5 3 G ) 1t

- oF
({5 ) <Vs0i-V(M),ut>dt

Z i

" of
2 Z azﬁzj (s 1)) (Vi - Vipj, pir) dt+;6 (0, pe))dM,,, ().

Next, using the equalities

2 ) = 3 2 (g psta). me M. xRS,
1 7

and

2 n 2
PO )= 3 s (@), pe Mp, zy e R,

it is easy to see that

5G
dG (1) = % <A 5/(2“),% dt + <v

1 3*G(pu)
+2<Rdv -V, 552 8. ( >dt+za (s, pe))dM,. ().

0G () OF () >
-V , dt
Oput dput e
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Moreover, the quadratic variation of M%(t), t > 0, the martingale part of
G(ut), t >0, is equal to

0
MG / Z Oz ((s 1)) Zf (o, 1)) (Vi - Vepj, pis) ds
v J

i,7=1
2
[ ()
0 5/-}’8

Thus, the Itd formula holds for any function G given by (5).
Next, by Theorem 5 and Remark 6, there exists a sequence {G,}n>1 of
functions of the form (5) such that for all 4 € Mp

Gn(p) = G(p), n— oo,

6Gn(/1') N 6G(:u’) in Cz(Rd), n — 0o,
o op
and
2 2
"Gulp) , 0°G(p)

in C*(R*Y), n— oo
6#2 5#2 ) )

2
Moreover, G, 6G§ﬂ(“ ) and 2 ?;ﬁ(ﬂ ) and their derivatives (by z and y) are uni-

formly bounded (in n) on No(Mp(R?)), No(Mp(R?)) xR? and N (M p(R)) x R4,
respectively. This implies that for each yp € Mg

(3550.) - (540, e

<V5G§M(p) -V(SF(S/(AM),/L>%<VW'V5F5(M)7“>’ n — 0o,

2
< Va vmaz(dy),“>*< VI'VyW(S””(dy)’”>’ e
Rd

R4 Sp?
2 2
<’V5Gn(u) ,u> — <‘V§G(M) ,u> , M — 00,
O o

by the dominated convergence theorem.

Using the uniform boundedness of G,, and its derivatives, Remark 1 and
the dominated convergence theorem, we obtain that the It6 formula for G is
also valid. The theorem is proved.

and
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4 Girsanov’s transformation and proof of the main result

We assume that a solution pg, ¢t > 0, to equation (1) is a canonical process
on the filtered probability space (§2,F, (Fi)i>0,P), where {2 is the space of
continuous functions from [0, +00) to Mg := Mp(R?), P is the distribution
of the process p, t > 0, (F¢)¢>o0 is the right-continuous and complete induced
filtration generated by g, t > 0, and F = Vi>oF;. We remark that such a
filtration exists by Lemma 7.8 in [18].

Now, let N(t), t > 0, be a continuous nonnegative martingale with N(0) = 1.
We consider a new measure on (2, F) defined as

dPN = N(t)dP on ]:t, t> 07

that is, Px(A) = [, N(t)dP, A € F;, which exists by Lemma 18.18 in [18].
Next we take any function G from Ci’Q (MFp) and note that

EC(t) i= MEO-3 My > 0,

is a continuous (F;)-matringale with E©(0) = 1, by Novikov’s theorem (see
Theorem 18.23 [18]). Here M€ is given by (4). So, we can define the measure
P :=Pgc on (£2,F), that is,

dP% = EC(t)dP = M O—3MLgp on £, t>0. (6)

Theorem 3 (Girsanov’s transformation for solutions to the Dean-
Kawasaki equation) Let G be a function from Cg’z(/\/lp) and PY be defined
by (6). Then the process pt, t > 0, solves the equation

S(F+G
dpy = %Autdt +V- <“NW> dt + V - (/g dWy)
t

on the probability space (12, F,P%). In particular, ps, t > 0, is a solution to
the equation

(67
dﬂt = 5 A/}qut + V- (\//J/tth)
on (2, F,P%), if G = —F.

Proof To prove the statement, we use Girsanov’s transformation (see e.g. The-
orem 18.19 and Lemma 18.21 [18]) and Theorem 2. So, we take a function
¢ € Cy(R?) and compute the joint quadratic variation [M,, M %], using The-
orem 2. The polarisation equality implies

t
0G (s

[M¢7MG}t :/ <V90 V4 (:u’ )
0 Opis

Thus, by Theorem 18.19 and Lemma 18.21 in [18], the process

o(F J;/i)(us) , u>} s

7ﬂ5>d8, t>0.

M-8 1) = (o) [ [S@ ) + (Vo @

is a continuous (JF;)-martingale on (£2, F,P%) with the quadratic variation
given by (3).
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Proof (Proof of Theorem 1) We assume that p,, ¢ > 0, is a solution to the
Dean-Kawasaki equation. Applying Theorem 3 for G = —F', we obtain that
e, t > 0, must solve the equation

(%

on the space (£2, F,P~f). By a simple computation, it is easy to see that the
process fi; := %ubt, t > 0, is a solution to (7) with the parameter b instead
of . Moreover, iz, t > 0, takes values in the space of probability measures
on RY. Hence, by Theorem 1 in [23], o = n € N and there exists a family of
R%-valued processes X(t), t > 0, such that

n

1
fir =~ 0%

i=1

with X%(t) = 2’ + @' (nt), t > 0, € [n], and @' (t), t > 0, i € [n], are standard
independent (F;)-Wiener processes on R?. This implies that

b — b —
I = 5265@(%) = EZ%@@)’
i=1 i=1

where X(t) = X' (L) =2+’ (&), t>0.

Next, we note that the process N (t) := —MY(t) + [M%];, t > 0, is a con-
tinuous (F;)-martingale on (2, F,P%), by Girsanov’s transformation. Thus,
we can consider the following transformation of measure P“ given by

dP .= eNO=2 Nl gpG = gP  on F,, t> 0.

Thus, applying Girsanov’s theorem to X(t), t > 0, i € [n], on (£2, F,P%), we
obtain that

6F (ps)

S, (X'(s)ds, 120,

RU(t) :== X'(t) + [M%, X, = X'(t) + /t v
0

are R%valued continuous (F;)-martingales on (2, F,P = P) for all i € [n]
and [R!, R/]; = #1053, t >0, 4,7 € [n], where I denotes the identity d x d
matrix.

The uniqueness also trivially follows from Girsanov’s transformation.

Ezample 1 We assume that V3, Vs € CZ(R?), Vi(z) = Vi(—z), z € R?, and
take

Flu) =5 / d / Vile — y)u(dr)u(dy) + / Valw)u(da), e Mp(RY)

In this case,

61;7(@(@ = | Vilz —yu(dy) + Va(z), neMpR?), zeR?,
p R
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and
8 F ()

o2
Then the Dean-Kawasaki equation for interacting Brownian particles has a
form

(sc,y):Vl(zfy), MGMF(Rd)a J},yERd.

a
dpy = 3 A pedt+V- <Mt /d V(- — Z/)Nt(dy)> dt+V- (e VVa) di+V- (/e dWy)
R

where V; plays a role of a two-body interaction potential between particles
and V5, is an external potential (see e.g. [2, 8, 9, 11, 14, 17, 26]).

Since F' € CE’Z(M r(R?)), the Dean-Kawasaki equation has a (unique in
law) solution if and only if ba = n € N and po = % S 8, for some 2? € RY,

i € [n], where b = pg(R%), by Theorem 1. Moreover,

b n
Nt:ﬁ§6Xi(t)’ tZO,

where the family X*(t), t > 0, i € [n], solves the equation

dX'(t) = —% Z VVA(X(t) = X7 (t))dt +V Vo (X (t))dt + \/zdwi(t), i € [n].

A Approximation of differentiable functions on Mp(R%)

A.1 Approximation of differentiable functions on Mr([a, b]?)

In this section, we fix a,b € R, a < b, and denote K := [a,b]? and Mg := Mp([a,b]?),
for convenience of notation. We remark that each function from C(Mp) is bounded on
N :=No(K)={pe Mp: u(K) < C} for all C > 0, since N¢ is compact in Mp.

We are going to introduce an analog of the Weierstrass approximation of functions
from CF™(MFp). For this we use multiplicative Bernstein polynomials on K = [a,b]¢ (see
e.g. [35]). Let g € C(K). We set for n > 1

n

Bu(g)@) = > g(afy. ) #hga®), wEK,

Jis---3a=0
where " ) (b )
n _ alb—a Jja(b—a
aJhm,Jd* (a+ n oot n )
and
1 da . ,
‘P?l,...,jd(l’) = m H Cyk (zp —a)?* (b —xp)" 7%, x€K.
@) k=1
Here Cf, = #lz),

We will consider By, n > 1, as linear operators from C™(K) to C™(K).

Proposition 1 Let m € Ng. Then the family of linear operators By, : C™(K) — C™(K),
n € N, satisfies the following properties:

(B1) {Bn}n>1 is a family of uniformly bounded linear operators on C™(K);
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B2) For each g € C™(K) and 1l € N&, |I| < m,
0

altl ol

@Bn(g)ﬁ@g in C(K), as n— oo,

that is, Bn(g) — g in C™(K), as n — 0.
(B3) If gr — g in C™(K), k — oo, then for each | € N¢, || < m,

alll alll )
@Bn(gk)%@g in C(K), as n,k — oo,

that is, Bn(gx) — g in C™(K), as n,k — oo.
Proof For K = [0,1]% Property (B2) was proved in [35]. The general case can be obtained
by the rescaling. Next, for each g € C™(K) Property (B2) implies the boundedness of

{1Brn(9)llcm (k) }n>1- By the Banach-Steinhaus theorem, we obtain (B1). Property (B3)
easily follows from (B1) and (B2).

Now, we introduce an analog of Bernstein polynomials on M g. We set for each p € Mp

where & is the point measure at ¢ € RY, i.e. 6.(A) equals 1 if ¢ € A and 0 otherwise. We
also define for every F € C(MF)

Po(F)(p) == F (xn(p), meMp, n2L1 (®)
Setting
" d
ull(2) = > Zj1,iadar | 2 € [0, c0) (D
J1s3a=0

it is easy to see that ul € C ([07 oo)("+1)d) and

PuB)p) = uf (o)) )e mEMe 2L )

We will denote by id the identity map on Mg, that is, id(u) = u, p € Mp.

Proposition 2 For each n > 1 the map xn : Mp — Mp is continuous and for each
sequence { g} >1 converging p in Mg one has xn(ur) — p in Mp asn,k — co. Moreover,
Xn maps N¢ to N¢ for all C >0 and n > 1.

Remark 2 Since the set No = {u € Mp : p(K) < C} is compact in M, we have that for
each C' > 0 xp, — id uniformly on N as n — oo, by Proposition 2.

Remark 3 Proposition 2 implies that P, is a linear map from C(Mp) to C(Mp).

Proof (Proof of Proposition 2) The continuity of xy, is trivial. We take an arbitrary sequence
{ur}r>1 in Mp which converges to u and g € C(K). Then by Proposition 1,

n
(9, xn(pr)) = Z 9 <a?17-~-7j.1) <¢;}17-~-7jd’uk>
0

J1sedd=

n
< Z g(a.;blv-wjd) Lp;hm,jd’“k>

J1s-3a=0

= <Bn(g)7ﬂk> - <g’ /J'>7 n,k — oo,
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since the map C(K) x Mg 3 (g, ) — (g, ) € R is continuous.
Due to the equality

Xn(W)(K)= > <w§-ﬁ,...,jd,u>< > w?l,.‘.,jd,u><1,u)u(f<),

J1se-3Ja=0 J1s--3a=0
Xn maps N¢ to Ng.

Proposition 3 For each F € C(Mp) and C > 0 we have that P, (F) — F uniformly on
Nc as n — oo, that is,

sup [P (F) (1) — F(u)| =0, n— co.
HeENC

Remark 4 Proposition 3 yields that for each F' € C(Mp) Py (F) — F in C(MFp) asn — oo.

Proof (Proof of Proposition 3) We assume that the statement is not true. Then there exist
€ > 0 and a sequence {fin },>1 in N such that | Py (F)(pn) — F(pn)| > € for all n > 1. Since
N is compact, we may assume that j,, — g without loss of generality. But by Proposition 2
and the continuity of F'; we have

Pn(F)(pn) = F(pn) = F(xn(pn)) = F(pn) = F(u) — F(u) =0, n— oo,
which contradicts the assumption.

We note that the space C(N¢) of continuous functions from N to R furnished with
the uniform norm is a Banach space. It is easy to see that for each n > 1 the map P, is a
continuous linear operator from C(N¢) to C(N¢). Indeed, the map x»n maps N¢o to Ng,
by Proposition 2. The continuity trivially follows from the form of P, (see (8)).

Corollary 1 The family {Pn},>1 of linear operators on C(N¢) is uniformly bounded.

Proof The corollary immediately follows from Proposition 3 and the Banach-Steinhaus the-
orem.

Lemma 2 Let F € CF(Mp) for some k € {1,2}. Then the function ul belongs to
ck ([0, oo)(”+1)d>. Moreover,

0 " 4
Wy =F . ) L ql n+1
o2 — U, (2)=F Z 2]17,“,“5(1?1 ’’’’’ ja Gitsia |0 2 € [0, 00) (7D
Hoeotd 15da=0
for all iy,...,iq and
82 n B
F _ .on n n+1
o WA =F Y mbap 50 @i | 2 € 0,000,
251, 0a 9%i1,. 004 Iseilg=0 eeold

for all j1,...,74, i1,...,1q, tf k= 2.

Proof The proof easily follows from the definition of F’ and F"'.

Proposition 4 Let F € CF™(Mp) for some k € {1,2} and m > 0. Then for every n > 1
Pp(F) € CF*° and for each p € Mp, z,y € K

n
PuF) o) = 3 F (el 5,) @)
J1s--,3a=0
n

= > P (F’ (-;a}-‘l,,“,jd))(u)w}ﬁ,...,jd(x)-

J1,---,3a=0
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and if k =2

n n
n YY) = " e (w); ?1,<-<,jd7 ZTbl,»-»ﬂid ?1,<-<,jd lnhmﬂ'd
Pl (F)(p; 2, y) > S F (xn(p)ia a ® () ()

J1,--3d=0%1,...,ig=0

n n
S PP (5ahpeal ) W95, @60 i, )

J1s--53d=011,...,ig=0

Proof The proposition follows from the definition of the derivatives F’, F"| equality (9)
and Lemma 2. Indeed,

0zj1,....44 Jlsees

P = Y Lk (o)) hia@

Il
\
=
—~
!
/N
8

Eda) ) € (@)

Similarly, one can obtain the equality for P/ (F)(u;z,y).

Theorem 4 Let F € C*™(Mpg) for some k € {1,2} and m > 0. Then for each l,] € N¢d,
1] + |I| < m and C > 0 one has

oltl oltl
sup | S PR (i) — S F ()| 50, n oo, (10)
z€K, peENg Ox ox
and if k =2
alu ol altl gl
sup — —=P/'(F)(;2,y) — — —F"(;z,y)| =0, n — oco. 11
e e |82 5y (F)( )= o oy ( ) (11)

Proof We will prove the theorem similarly as Proposition 3. We start with (10). If (10) does
not hold, then there exist € > 0 and sequences {pin}n>1 C N¢, {Zn}n>1 € K such that

oltl

@F'(un;mn) >e (12)

’Pl (F)(pnszn) —

for all n > 1. Since N and K are compact sets, we may assume that un — po and x, — xo
as n — oo, without loss of generality. So, we compute

ol alll " , " "
TP E) niwn) = 5 > F (nlm)iafi g, ) @ (@)
J1y-2Ja=0
oltl

= @Bn (F/ (xn(pn); )) (zn)

Since F’ is continuous on Mg x K and K is compact, it is easy to see that F’(xn(n);*) —
F'(uo;+) in C(K) as n — oo, using Proposition 2. Thus, by Proposition 1 (B3),

alll alll ol
?P/ (F)(pn;zn) = @Bn (F/ (Xn(l‘n)§ )) (Tn) — @F/ (po; o), n — oo,

that contradicts (12).
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The uniform convergence (11) can be proved by the same argument taking into an
account that

alll oIl
@@Pn (F) (s 2, y)
alll glll n n
= 9al ot Z Z Yok (xn(un);aﬁ,...,jd,a?h_”,id) N €)1 (1)
Y 1sa=01i1,...,ig=0
olll gl _
S oy (F" Oen )i -) (2,9),

where Bn, n > 1, are the Bernstein polynomials defined for functions from C(K?2).

A.2 Approximation of differentiable functions on M p(R?)

We fix a smooth bounded function % : R — R and define a map from Mg (R?) to M p(R%)
as follows

9, (1)(d) 1= p()p(da).

We also assume that 1 has a compact support. Let K = [a, b]d such that suppy C K.
Then the measure ¥, (p) is supported on K and, consequently, we can consider 9, as a map
from Mp(R?) to Mp(K) C Mp(R?).

Lemma 3 The map 9y : Mp(R?) - Mp(K) is continuous.
Proof The proof trivially follows from the definition of 1.
We define for each F' € C(Mp(K)) a new function as follows

Ly(F)(u) = Ly, (F) (1) := F(9y (1), 1€ Mp(R).

Lemma 4 If F € CF™(Mp(K)) for some k € {0,1,2} and m > 0, then I'y(F) €
Chm(Mp(RY)). Moreover,

L) (F) (s x) = Dy (F'(52) (W (x) = F'(9y (n); 2)v(x), pe MpRY), zeR?
and
I (F) (s x) = Ty (F" (5 2,9) () ()¢ (y) = F" (94 (0); 2, )Y (@)d(y), ne MpR?), zeR

Remark 5 We remark that (z) = 0 for all z € K¢ := R\ K, thus, we assume that the
multiplication f(z)y(x) = 0, even if f is not defined for such x.

Proof (Proof of Lemma 4) The continuity of I'y(F) immediately follows from Lemma 3.
The derivatives of Iy, (F') can be computed using the following observation

Ty (F)(p+edz) = F(0y(p) + e9p(2)02), p€ MpR?Y), z€R?Y €>0.

Lemma 5 Let {¢n},>1 be a sequence of uniformly bounded continuous functions on R?
which pointwise converges to ¢ € Cy(R), then ¥y, (1) = (1), n — oo, for each p € Mp.

Proof The lemma easily follows from the dominated convergence theorem.
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Proposition 5 Let F' € C*™(Mp(R?)) for some k € {0,1,2} and m > 0. Let {¢n}n>1
be a sequence of smooth bounded functions on R* such that 1, — 1 in C™(R?), n — oo,
and {n}n>1 is uniformly bounded. Then for each p € Mp(RY)

Iy, (F)(n) = Ly(F)(1), n— oo,

r), (F)(u;-) = IL(F) (@) in C™(R?Y), n—oo, if k>1,
and

Iy (F)(ps) = TY(F) () in C™(R*), n—oo, if k=2

Proof We first note that F'(un;-) — F’(u;-) in C™(R?) and F"(un;-) — F"(u;-) in
C™(R%%) as py, — p, if F € C>™(Mp(R%)). Thus, the statement immediately follows from
lemmas 4 and 5.

We denote by C (M p(R?)) the set of functions on Mp(R9) of the form

G(p) = u((p1, 1), (epr ), 1 E Mp(R?),

where ¢;, i € [p] = {1,...,p}, are positive smooth functions with compact supports,
u € C*([0,400)P) and p € N.

Remark 6 We remark that a function belongs to CF ([0, +00)P) if and only if it can be
extended to a function from C*(RP).

Let Fi denote the restriction of a function F from C(Mg(R%)) to Mp(K).
Lemma 6 For each F € CF™(Mp(RY)) the function Fi belongs to CF"™(Mp(K)) and
Fr(pa) = Fl(px), pe€Mp(K), z€K,
Fr(wz,y) =F'(mz,y), peMp(K), zyeK.
Proof The proof of the lemma is trivial.

Theorem 5 Let F € CF™(Mp(R?)) for some k € {0,1,2} and m > 0. Then there exists
a sequence {Fp}p>1 from C&(Mp(R?)) such that for all p € Mp(RY)

FTL(M)%F(M)v ’I’L—)OO,

and
F'(u;) = F"(;-) in C™(R?*?), n— oo, if k=2.

Moreover, if for some C > 0 the functions F, F' and F'" and their derivatives are
bounded on sets No(Mp(R?)), No(Mp(R?)) x R? and No(Mp(R?D)) x R22, respectively,
then the sequence {Fn},>1 can be chosen with {Fn}n>1, {Fhtn>1, {F}}n>1 and their
derivatives uniformly bounded in n on No(Mp(RY), No(Mp@R?)) x R and
Ne(MpRY)) x R29, respectively.

Proof We assume that k = 2. Let 1, be a sequence of smooth functions on R such that
they take values from [0,1], supp¥n C Ky := [-n,n]%, n(z) = 1, 2 € [-n + 1,n —
1}d, and all derivatives are uniformly bounded in x and n, i.e. for each [ € Ng, the set
{%wn(ax), z €RY n>1} is bounded. Let us fix a function F € C*™(Mp(R4)). We

are going to approximate F, by polynomials introduced in the previous section. So, by
Proposition 3 and Theorem 4, for every n > 1 there exists a number N, € N such that

1
sup  |Fg, (0) — Pn, (Fr, ) ()] < =
HEN (Kn) n

)
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1
/ N p! ., —
ueAsf:Lllé)Kn) ||FKn(:u7 ) = Py, (Fre, ) (13 )”C’“(Kn) = n

and
1

sup || P, (152) = PR, (i) (15 )| oo 2 <

HENR (Kp)

where Ny, (Ky) is defined in Lemma 1 with C = n and K = Ky, and Py;,, is defined by (8)
for K = Kj,.

We set Fy(u) := Iy, (PN, (Fr,)) (1) = PN, (Fx,,) (94, (1)), p € Mp(R?). By Lemma 4,
F, € CE™m(Mp(R?)). Moreover, it is easy to see that F}, € Ck (M p(R?)), by the definition
of PNn and Fﬂ’n'

Next, we are going to show that {F,},>1 is the sequence which approximates F. We
fix e > 0, u € Mp(R?) and a compact set K C R% We choose # € N such that % <,
K C Kj, n(R%) < 7 and for all n > 7

)

|F () — Ty, (F) ()] <

oM

HF/(M; D) - F&M () (w3 ')HCm(K) < %

and
1

|7 i) - F«ZH(F)(H?‘)HCM(K2> Se

Such 7 exists due to Proposition 5, since {¢n},>1 converges to the function ¢ = 1 in
C™(R%). Let us remark that Iy, (F) = Iy, (Fk, ), ry () =1, (Fk)and I (F) =
F{D’" (FKk), by Lemma 6. So, now we can estimate for each n > 7

|F (1) = Po(w)] < |F (1) = Ly, (F)W| + [Py, (Fic, ) (1) = Ty, (P, (Fi,,)) ()]

< & [ Fit (03, 1)) — P (Fic )0, )| < £+ 2 <

since ¥y, (1) € Nn(Ky). Similarly, for each n > 72 4 1, we have

17 1) = B s ) o ey < |7 (150 = F’LH(F)(“;')Hcm(K)

| 1, Fr) (i) = 1, (P, (Fi,) (1 ')Hcm(m

< 2 Bl D, (1) 0 = Pl (i) O, (155Dl o

5 1
-+ — <g,

<

N
S

since 1n(z) = 1 on K for all n > #i + 1. Analogously, [[F"(y;-) — Fy/ (15 )l om 2y < € for
all n > n + 1. The theorem is proved.
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