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Abstract. In the article we consider the model of coalescing diffusion parti-
cles which have some masses. At the moment of coalescing the masses of the

particles are summed together and influence their motions. The system of
processes that describes evolution of the particles is constructed by martingale
methods. The Markov property of this system is stated and the asymptotic

restriction on the mass growing of an individual particle is obtained.

1. Introduction

This paper is devoted to the construction a mathematical model of coalescing
diffusion particles on R. We assume that every particle has a mass, which influences
its diffusion and drift. The particles start from a finite or countable set of points,
move independently up to the moment of meeting, after which they coalesce and
their masses are summed.

Systems of coalescing diffusion particles were studied by Arratia R. A. [1, 2], Le
Jan Y. [15], Norris J. [18], Evans S. S. [8], Dawson D. A. [3, 4], Dorogovtsev A. A. [5,
6], Konarovskyi V. V. [13, 14, 12] and others. Particular attention is paid to a
fairly wide class of coalescing particles systems, in which every subsystem may be
described as a separate system [15, 17, 8, 1, 9]. On the one hand, such systems
are widely used in turbulence theory and statistical mechanics [18, 10], on the
other hand they represent an important interest in terms of mathematics itself.
For example, the fact that the particles which start from an arbitrary compact
set, instantly coalesce to the finite number [8], allows to integrate over a stochastic
flow [5], and the latter, in turn, develops a new stochastic analysis. It should be
noted that the ability to describe the motion of an arbitrary subsystem of the
system, without taking into consideration all the particles of the system, allows to
develop good methods for the study of appropriate mathematical models.

Often there is a need to assume that the particles transfer some mass. Models
in which the particles have mass are actively studied. However, in some models
a mass that is transferred does not influence their motion [3, 4, 21, 20], while in
others, it influences but the particles don’t coalesce (smooth interaction) [5].
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In the study of systems in which the particles transfer some mass, from the
physical point of view it is natural to assume that in coalescing the mass is pre-
served (the mass of the new particle is equal to the sum of the masses of particles,
from which it was formed) and influences their motion. A system of Brownian
particles which have masses that are summed together at the moment of coalesc-
ing was constructively constructed in the papers [13, 14]. Moreover, the diffusion
of particles changes only when particles are changing their masses. In this case,
the random environment in which particles diffuse, is homogeneous. The desire
to make the model that was under consideration earlier, more close to reality (to
include heterogeneity and drift) leads to the fact that we have to consider the
diffusion coefficients, which depend not only on the mass, but also on the position
of the particles. So, it is assumed that the trajectory x(t), t ≥ 0, of a particle
satisfies the following stochastic differential equation

dx(t) =
a(x(t))

m(t)
dt+

σ(x(t))√
m(t)

dw(t),

where m(t) is a mass of the particles at the moment t, w(t), t ≥ 0, some Wiener
process, a, σ are bounded Lipschitz continuous functions and inf

x∈R
σ(x) > 0. We

call such system of the particles the heavy diffusion particles system with drift.
It should be noted that in this case the system can not be described by spec-

ifying its finite subsystems, as it was done in the work [15, 17, 8, 9]. So, first a
mathematical model of a finite number of particles is constructed, after we do the
passing to the limit as the number of particles tend to infinity. Ability of passing
to the limit ensures that the particles which are far from an isolated subsystem of
finite system of particles, have little effect on it (Lemma 4.6).

This work consists of two parts. In the first part it is constructed the mathe-
matical model of a finite number of particles (Section 2) and its Markov property
is stated (Section 3). In the second part the passing to the limit as the number
of particles tend to infinity is done and some properties of the infinite system of
particles are shown (Sections 5, 6).

2. Finite Particles System

In this section it is studied the case of finite number of particles. The set of
processes that describe such motion, is constructed by coalescing and rescaling of
the solutions of stochastic differential equations

dxi(t) = a(xi(t))dt+ σ(xi(t))dwi(t),

where wi(t), t ≥ 0, i = 1, . . . , N are independent Wiener processes.
Let N ∈ N is fixed. Denote [N ] = {1, 2, . . . , N}.

Definition 2.1. A set π = {π1, . . . , πp} of non-intersection subsets of [N ] is called
order partitioning of [N ] if

1)
p⋃

i=1

πi = [N ];

2) if l, k ∈ πi then {l ∧ k, . . . , l ∨ k} ⊆ πi, for all i = 1, . . . , p.
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The set of all order partitioning of [N ] is denoted by ΠN .
Every element π = {π1, . . . , πp} ∈ ΠN generates equivalence between [N ] el-

ements. We assume that i ∼π j if there exists a number k such that i, j ∈ πk.
Denote an equivalence class that contain the element i ∈ [N ] by îπ, i.e. îπ = {j ∈
[N ] : j ∼π i}.

Let γ : [N ] → [N ] be some bijection. Define

iγπ = γ−1

(
min
j∈̂iπ

γ(j)

)
.

Remark 2.2. The map γ will define range of particle. We will suppose that i-th
particle has range γ(i).

If (R, r) is some metric space then we denote by CR the space of continuous
functions from [0,∞) to R with metric

dR(ξ, η) =
∞∑
k=1

1

2k

(
max
t∈[0,k]

r(ξ(t), η(t)) ∧ 1

)
, ξ, η ∈ CR.

Consider the subspace EN = {x ∈ RN : xi ≤ xi+1, i = 1, . . . , N − 1} of the
space RN and the set BN = {b ∈ RN : bi > 0, i = 1, . . . , N}. Elements of space
EN and BN will be used as start points and masses of particles, respectively.

Take b ∈ BN and construct a map Λb
γ from {ξ ∈ CRN : ξ(0) ∈ EN} to CRN . It

will be used to define a system of processes that describes the joint motion of the
N particles system. Let ξ ∈ CRN and ξ(0) ∈ EN . Construct an element ζ = Λb

γξ
by induction.

Take π0 ∈ ΠN such that

i ∼π0 j ⇔ ξi(0) = ξj(0).

Put τ0 = 0 and

ζ0i = ξiγ
π0

(
t∑

j∈̂iπ0
bj

)
, t ≥ 0, i = 1, . . . , N.

Let πk, τk, ζ
k
i , i = 1, . . . , N are defined. Denote

τk+1 = inf{t > τk : ζki (t) = ζkj (t), i 6∼πk j, i, j = 1, . . . , N}.

If τk+1 = ∞ then put πk+1 = πk, else take an element πk+1 ∈ ΠN such that

i ∼πk+1 j ⇔ ζki (τk+1) = ζkj (τk+1).

Define

ζk+1
i (t) =

 ζki (t), t < τk+1,

ζiγ
πk+1

(
τk+1 +

(t−τk+1)
∑

j∈î
πk

bj∑
j∈î

πk+1
bj

)
, t ≥ τk+1.

Put Λb
γξ = ζN−1.

Remark 2.3. Λγ is measurable map from the space (Ln,Ln) to (CRN ,B (CRN )),
where Ln =

{
f ∈ CRN : f(0) ∈ EN

}
, Ln = B (CRN ) ∩ Ln.

Let’s state the main result of this section.
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Theorem 2.4. Let γ : [N ] → [N ] be some bijection, x ∈ EN , b ∈ BN and ξi(t),
t ≥ 0, i = 1, . . . , N , be solutions of the stochastic differential equations{

dξi(t) = a(ξi(t))dt+ σ(ξi(t))dwi(t),
ξi(0) = xi,

(2.1)

were wi(t), t ≥ 0, i = 1, . . . , N , are independent Wiener processes, a, σ are some
bounded Lipschitz continuous functions on R and inf

x∈R
σ(x) > 0. Then the random

process
ζ = Λb

γξ

satisfies the following conditions

1◦) Mi = ζi(·)−
·∫
0

a(ζi(s))
mi(s)

ds is a continuous square integrable martingale with

respect to the filtration

Fζ
t = σ(ζi(s), s ≤ t, i = 1, . . . , N),

where mi(t) =
∑

j∈Ai(t)

bj, Ai(t) = {j : ∃s ≤ t ζj(s) = ζi(s)};

2◦) ζi(0) = xi, i = 1, . . . , N ;
3◦) ζi(t) ≤ ζj(t), i < j, t ≥ 0;

4◦) 〈Mi〉t =
t∫
0

σ2(ζi(s))
mi(s)

ds, t ≥ 0;

5◦) 〈Mi,Mj〉tI{t<τi,j} = 0, t ≥ 0, where τi,j = inf{t : ζi(t) = ζj(t)}.

Remark 2.5. Further, unless otherwise stated we assume that a, σ are a bounded
Lipschitz continuous functions on R and inf

x∈R
σ(x) > 0.

The proof of the theorem follows from the construction of mapping Λb
γ and the

next lemma.

Lemma 2.6. Let wi(t), t ≥ 0, i = 1, . . . , N , be a set of independent Wiener
processes, τ be a stopping time with respect to the filtration Fw

t = σ(wi(s), s ≤
t, i = 1, . . . , N) and a random variable ξ be strictly positive measurable with respect
to Fw

τ . Then

ŵi(t) =

{
wi(t), if t < τ,
wi(τ) +

1√
ξ
[wi (τ + (t− τ)ξ)− wi(τ)], else

are independent Wiener processes, moreover, τ is a stopping time with respect to
F ŵ

t = σ(ŵi(s), s ≤ t, i = 1, . . . , N) and random variable ξ is measurable with
respect to F ŵ

τ .

Theorem 2.4 describes evolution of the finite heavy diffusion particles system
with drift. Let’s prove that the conditions 1◦)-5◦) uniquely determine the distri-
bution of such particles system.

Lemma 2.7. Suppose that a system of processes ζi(t), t ≥ 0, i = 1, . . . , N , satisfies
the condition 1◦)-5◦) of Theorem 2.4 and γ : [N ] → [N ] is some bijection. Then
there exists a system of independent Wiener processes wi(t), t ≥ 0, i = 1, . . . , N ,
such that

ζ = Λb
γξ,
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where ξi(t), t ≥ 0, i = 1, . . . , N , are solutions of the stochastic differential equa-
tions {

dξi(t) = a(ξi(t))dt+ σ(ξi(t))dwi(t),
ξi(0) = xi.

Proof. Suppose that ζi(t), t ≥ 0, i = 1, . . . , N , satisfy the conditions 1◦)-5◦) of
Theorem 2.4. We first show that the processes ζi and ζj coalesce at the moment
of the meeting, for all i, j = 1, . . . , N , i.e.

P{ζi(τi,j + t) = ζj(τi,j + t), t ≥ 0 | τi,j < ∞} = 1.

Since σ(ζi(s))√
mi(s)

> 0, i = 1, . . . , N , than by the Doob theorem [16] there exists a

system of Wiener processes w̃i(t), t ≥ 0, i = 1, . . . , N , adapted to the filtration Fζ
t

such that

ζi(t) = xi +

t∫
0

a(ζi(s))

mi(s)
ds+

t∫
0

σ(ζi(s))√
mi(s)

dw̃i(s).

Take i < j, n ∈ N and denote τni,j = τi,j ∧ n. From last equation we have

ζk(t+ τni,j) = ζk(τ
n
i,j) +

t∫
0

a(ζk(s+ τni,j))

mk(s+ τni,j)
ds+

t∫
0

σ(ζk(s+ τni,j))√
mk(s+ τni,j)

dw̃n
k (s).

where w̃n
k (t) = w̃k(t+τni,j)−w̃k(τ

n
i,j), t ≥ 0, k = i, j. Using the Lipschitz continuity

of the function a and equality mi(t + τni,j)I{τn
i,j<n} = mj(t + τni,j)I{τn

i,j<n}, t ≥ 0,

we obtain

(ζj(t+ τni,j)− ζi(t+ τni,j))I{τn
i,j<n} ≤ L

t∫
0

(ζj(s+ τni,j)− ζi(s+ τni,j))I{τn
i,j<n}ds

+

 t∫
0

σ(ζj(s+ τni,j))√
mj(s+ τni,j)

dw̃n
j (s)−

t∫
0

σ(ζi(s+ τni,j))√
mi(s+ τni,j)

dw̃n
i (s)

 I{τn
i,j<n}.

Since the random variable I{τn
i,j<n} is measurable with respect to Fζ

τn
i,j
,

E
[
(ζj(t+ τni,j)− ζi(t+ τni,j))I{τn

i,j<n}

]
≤

t∫
0

E
[
(ζj(s+ τni,j)− ζi(s+ τni,j))I{τn

i,j<n}

]
ds.

From Gronwall’s inequality we have

E
[
(ζj(t+ τni,j)− ζi(t+ τni,j))I{τn

i,j<n}

]
= 0.

By Fatou’s lemma,

E
[
(ζj(t+ τi,j)− ζi(t+ τi,j))I{τi,j<∞}

]
= 0.

Hence, by virtue of the continuity of the processes ζi and ζj , we obtain needed
equality.
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Next calculate

〈Mi,Mj〉tI{t<τi,j} =

t∫
0

σ(ζi(s))σ(ζj(s))√
mi(s)

√
mj(s)

d〈w̃i, w̃j〉sI{t<τi,j} = 0.

Hence
〈w̃i, w̃j〉tI{t<τi,j} = 0.

Let’s take a system of Wiener processes w′
i(t), t ≥ 0, i = 1, . . . , N , that are

independent of w̃i(t), t ≥ 0, i = 1, . . . , N , and denote

δj = inf{t : ζγ−1(j)(t) ∈ {ζγ−1(1)(t), . . . , ζγ−1(j−1)(t)}}, j = 2, . . . , N.

ŵi(t) =

{
w̃i(t), if t < δγ(i),
w̃i(δγ(i)) + w′

i(t)− w′
i(δγ(i)), else,

where δ1 = +∞ and i = 1, . . . , N . By the Levi theorem (see Theorem 2.6.1 [11])
ŵi(t), t ≥ 0, i = 1, . . . , N , are a system of independent Wiener processes. Let
π0 ∈ ΠN such that i ∼π0 j ⇔ ζi(0) = ζj(0) and τ0 = 0. Set

τk = inf{t > τk−1 : ζi(t) = ζj(t), i 6∼πk−1 j, i, j = 1, . . . , N}
and if τk = ∞ then put πk = πk−1, else take an element πk ∈ ΠN such that

i ∼πk j ⇔ ζi(τk) = ζj(τk).

Using the system of the processes ŵi(t), t ≥ 0, i = 1, . . . , N , the stopping times τk
and the elements πk, k = 0, . . . , N − 1, one can construct a system of independent
Wiener processes wi(t), t ≥ 0, i = 1, . . . , N , such that

ζ = Λb
γξ,

where ξi(t), t ≥ 0, i = 1, . . . , N , are solutions of the stochastic differential equa-
tions {

dξi(t) = a(ξi(t))dt+ σ(ξi(t))dwi(t),
ξi(0) = xi.

The lemma is proved. �
Corollary 2.8. The conditions 1◦)-5◦) of Theorem 2.4 uniquely determine the
distribution of the process in the space (CRN ,B (CRN )).

Definition 2.9. A system of processes is called the process of heavy diffusion
particles with drift in the space EN if it satisfies the conditions 1◦)-5◦) of Theo-
rem 2.4.

3. Strictly Markov Property of the Process of Heavy Diffusion
Particles with Drift in the Space EN .

In this section the strictly Markov property of the heavy diffusion particles
with drift is stated. Let γ : [N ] → [N ] be some bijection, x ∈ EN , b ∈ BN , ξi(t),
t ≥ 0, i = 1, . . . , N , be solutions of the stochastic differential equations (2.1) and
ζ = Λb

γξ. Denote by Pξ
x the distribution of the random process ξ in the space

CRN . As is well known (see for instance [7]), x → Pξ
x(A) is Borel function, for all

A ∈ B (CRN ). Let

Pζ
x = Pξ

x ◦ (Λb
γ)

−1.
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Then the map x → Pζ
x(A) is Borel function.

Theorem 3.1. The set of the distributions {Pζ
x, x ∈ EN} is strictly Markov

system.

Proof. Let Ft(CRN ) =
⋂
ε>0

⋂
x∈EN

Bt+ε (CRN )
Pζ
x
, where Bt (CRN )

Pζ
x
denotes the σ-

algebra of cylinder sets {y ∈ CRN : y(s) ∈ B}, s ≤ t, B ∈ B
(
RN
)
, that is

completed by all Pζ
x-null sets. We will show that, for every bounded Ft(CRN )-

stopping time τ ,

Pζ
x(A ∩ {y : y(t+ τ(y)) ∈ Γ}) =

∫
A

Pζ
y′(τ(y′)){y : y(t) ∈ Γ}Pζ

x(dy
′),

where A ∈ Fτ (CRN ), Γ ∈ B
(
RN
)
, x ∈ EN . This will be sufficient to prove our

theorem.

Fix i = 1, . . . , N . Since Ni = yi(·)−
·∫
0

a(yi(s))
mi(s)

ds is a (Pζ
x,Bt(CRN ))-martingale

for each x ∈ EN and t → Ni(t) is right continuous, Ni is also a (Pζ
x,Ft(CRN ))-

martingale. By Doob’s optional sampling theorem Ni(·+ τ) is a (Pζ
x,Ft+τ (CRN ))-

martingale. In particular, for t > s A ∈ Fs+τ (CRN ) and C ∈ Fτ (CRN ), we have

Ex

[
(Ni(t+ τ)−Ni(s+ τ))I{A∩C}

]
= 0.

This implies that

Ex [(Ni(t+ τ)−Ni(s+ τ))IA|Fτ (CRN )] = 0 for Pζ
x-a.a. y.

Therefore, if P̃ (y,A) = Pζ
x(θ

−1
τ (A)|Fτ (CRN )), A ∈ B (CRN ) is the regular condi-

tional probability with respect to Fτ (CRN ) (it exists by Theorem 1.3.1 [11]), where

θτ : CRN → CRN is defined by (θτy)(t) = y(t + τ(y)), then P̃ (y, {y′ : y′(0) =

y(τ(y))}) = 1 for Pζ
x-a.a. y and Ni is a (P̃ (y, ·),Ft(CRN ))-martingale. Similarly,

N2
i −

t∫
0

σ2(y′
i(s))

mi(s)
ds and Ni(t ∧ τi,j)Nj(t ∧ τi,j) are (P̃ (y, ·),Ft(CRN ))-martingales.

Hence, by Lemma 2.7, P̃ (y, ·) = Pζ
y(τ(y)). Thus, for every A ∈ Fτ (CRN ) and

Γ ∈ B
(
RN
)
, we have∫

A

Pζ
y′(τ(y′)){y : y(t) ∈ Γ}Pζ

x(dy
′) =

∫
A

P̃ (y′, {y : y(t) ∈ Γ})Pζ
x(dy

′)

=

∫
A

Pζ
x({y : y(t+τ(y)) ∈ Γ}|Fτ (CRN ))Pζ

x(dy
′) = Pζ

x(A∩{y : y(t+τ(y)) ∈ Γ}).

The theorem is proved. �

4. Infinite Particle System

In this section the countable particles system is considered. The system of
processes which describes the motion of the particles is constructed from a finite
system of processes by passing to the limit. The following theorem holds.
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Theorem 4.1. Let a, σ be bounded Lipschitz continuity functions and inf
x∈R

σ(x) >

0. Then for every non-decreasing sequence of real numbers {xi, i ∈ Z} and se-
quence of strictly positive real numbers {bi, i ∈ Z} such that

lim
n→±∞

{(xn+1 − xn) ∧ bn+1 ∧ bn} > 0, (4.1)

there exists a set of processes ζi(t), t ≥ 0, i ∈ Z, satisfying

1◦) Mi = ζi(·)−
·∫
0

a(ζi(s))
mi(s)

ds is a continuous square integrable martingale with

respect to the filtration

Fζ
t = σ(ζi(s), s ≤ t, i ∈ Z),

where mi(t) =
∑

j∈Ai(t)

bj, Ai(t) = {j : ∃s ≤ t ζj(s) = ζi(s)};

2◦) ζi(0) = xi, i ∈ Z;
3◦) ζi(t) ≤ ζj(t), i < j, t ≥ 0;

4◦) 〈Mi〉t =
t∫
0

σ2(ζi(s))
mi(s)

ds, t ≥ 0;

5◦) 〈Mi,Mj〉tI{t<τi,j} = 0, t ≥ 0, where τi,j = inf{t : ζi(t) = ζj(t)}.

Remark 4.2. In case where mi(t) = ∞ we assume that 1
mi(t)

= 0.

In order to prove the theorem, we will state several auxiliary lemmas.
Let {ni, i ∈ Z} be some strictly increasing sequence of real numbers. Fix N ∈ N

and choose a bijection γN : [2N + 1] → [2N + 1] as follows. Denote

D1 = {ni, ni + 1, i ∈ Z} ∩ [0, N ] = {p11, . . . , p1k1
}, p11 < . . . < p1k1

,

D2 = {ni, ni + 1, i ∈ Z} ∩ [−N, 0) = {p21, . . . , p2k2
}, p21 < . . . < p2k2

.

Let

Z ∩ [0, N ] \D1 = {p31, . . . , p3k3
}, p31 < . . . < p3k3

,

Z ∩ [−N, 0) \D2 = {p41, . . . , p4k4
}, p41 < . . . < p4k4

.

Put

γN (N + 1 + p1i ) = i, i = 1, . . . , k1,

γN (N + 1− p2i ) = k1 + i, i = 1, . . . , k2,

γN (N + 1 + p3i ) = k1 + k2 + i, i = 1, . . . , k3,

γN (N + 1− p4i ) = k1 + k2 + k3 + i, i = 1, . . . , k4.

Lemma 4.3. Let {ni, i ∈ Z} be a strictly increasing sequence of real numbers,
γN : [2N + 1] → [2N + 1] be the bijection defined above, {xi, i ∈ Z} be a non-
decreasing a sequence of real numbers, {bi, i ∈ Z} be a sequence of strictly positive
numbers and {fk, k ∈ Z} ⊂ C(R), fk(0) = xk. Denote

(gN−N , . . . , gNN ) = Λ
(b−N ,...,bN )

γN (f−N , . . . , fN ), N ∈ N.
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(i) If for some m ∈ N and T > 0 there exist C > 0 and δ > 0 such that

max

{
max
t∈[0,T ]

fk

(
t

bk

)
, k ∈ {ni, nj + 1; i = 0, . . . ,m, j = 0, . . . ,m− 1}

}
< C,

min
t∈[0,T ]

fnm+1

(
t

bnm+1

)
> C + δ,

then for all N > nm and k = −N, . . . , nm

max
t∈[0,T ]

gNk (t) ≤ max
t∈[0,T ]

gNnm
(t) < C, min

t∈[0,T ]
gNnm+1(t) > C + δ.

(ii) If for some −m ∈ N there exist C < 0 and δ < 0 such that

min

{
min

t∈[0,T ]
fk

(
t

bk

)
; k ∈ {ni, nj + 1; i = m+ 1, . . . , 0 j = m, . . . , 0}

}
> C,

max
t∈[0,T ]

fnm

(
t

bnm

)
< C + δ,

then for all N > −nm and k = nm + 1, . . . , N

min
t∈[0,T ]

gNk (t) ≥ min
t∈[0,T ]

gNnm+1(t) > C, max
t∈[0,T ]

gNnm
(t) < C + δ.

The proof of the lemma immediately follows from the construction of the map

Λ
(b−N ,...,bN )

γN , N ∈ N, and the choice of the bijection γN , N ∈ N.
Let f : D → R be some bounded function. Define ‖f‖ = sup

x∈D
|f(x)|.

Lemma 4.4. Let a, σ be a bounded Lipschitz continuous functions and inf
x∈R

σ(x) >

0. Then for each δ > 0 and T > 0 the solution of the equations

ξ(t) = x0 +

t∫
0

a(ξ(s))ds+

t∫
0

σ(ξ(s))dw(s) (4.2)

satisfies following condition

P
{

max
t∈[0,T ]

ξ(t)− x0 < δ

}
≥ P

w(t) < δ − ‖a‖
inf
x∈R

σ(x)2
t, t ∈

[
0, T · ‖σ‖2

] .

Lemma 4.5. For every a ∈ R, δ > 0 and a Wiener process w(t), t ≥ 0,

P{w(t) + at < δ, t ∈ [0, T ]} > 0.

The proof easily follows from the Girsanov theorem.

Lemma 4.6. Let yn, n ∈ N, be a non-decreasing sequence of real numbers such
that inf

n≥1
(yn+1− yn) = δ > 0, ξn(t), t ≥ 0, n ∈ N, be the solutions of the equations

ξn(t) = yn +

t∫
0

a(ξn(s))ds+

t∫
0

σ(ξn(s))dwn(s),
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where wn(t), t ≥ 0, n ∈ N, are a set of Wiener processes and

ξmax
n = max

t∈[0,T ]
ξn(t), ξmin

n = min
t∈[0,T ]

ξn(t).

Then for every δ1 ∈
(
0, δ

2

)
,

P
{

lim
n→∞

{
max

k=1,...,n
ξmax
k ≤ yn +

δ

2
, ξmin

n+1 > yn+1 − δ1

}}
= 1.

The proof of the lemma is similar to the proof of Lemma 5 [13], considering
Lemmas 4.5 and 4.4.

Proof of Theorem 4.1. Since the sequences {xi, i ∈ Z} and {bi, i ∈ Z} satisfy
the inequality (4.1), there exists a strictly increasing sequence of real numbers
{ni, i ∈ Z} such that

inf
i∈Z

(xni+1 − xni) = δ > 0, sup
i∈Z

{
1

bni

,
1

bni+1

}
< ∞.

Let γN : [2N + 1] → [2N + 1] be a bijection constructed by the sequence
{ni, i ∈ Z} and ξn(t), t ≥ 0, n ∈ Z, be the solutions of the equations

ξn(t) = xn +

t∫
0

a(ξn(s))ds+

t∫
0

σ(ξn(s))dwn(s),

where wn(t), t ≥ 0, n ∈ Z, are independent Wiener processes.
Put

(ζN−N , . . . , ζNN ) = Λ
(b−N ,...,bN )

γN (ξ−N , . . . , ξN ),

for each N ∈ N. Fix T > 0. By Lemmas 4.3 and 4.6

P
{
∃N ∀n ≥ N ζnk (t) = ζNk (t), t ∈ [0, T ]

}
= 1,

for any k ∈ Z, i.e. the sequence {ζnk (t), t ∈ [0, T ]}n≥k is stabilized with probabil-
ity 1, for all integer k. Denote the limit of {ζnk , t ∈ [0, T ]}n≥k by ζk,T . From the
stabilization of {ζnk , t ∈ [0, T ]}n≥k it follows that

P
{
∃N ∀n ≥ N mn

k (t) = mN
k (t), t ∈ [0, T ]

}
= 1,

where mn
k (t) =

∑
j∈An

k (t)

bj , A
n
k (t) = {j : ∃s ≤ t ζnj (s) = ζnk (s)}, t ≥ 0. Let mk,T

denote the limit of the sequence {mn
k , t ∈ [0, T ]}n≥k. Denote ζk(t) = ζk,T (t)

and mk(t) = mk,T (t), for some T ≥ t. It is clear that such definition is correct,
moreover,

mi(t) =
∑

j∈Ai(t)

bj , Ai(t) = {j : ∃s ≤ t ζj(s) = ζi(s)}.

From the stabilization it follows that one can construct a system of Wiener
processes w̃n(t), t ≥ 0, n ∈ Z, such that 〈w̃i, w̃j〉tI{t<τi,j} = 0 and

ζn(t) = xn +

t∫
0

a(ζn(s))

mn(s)
ds+

t∫
0

σ(ζn(s))√
mn(s)

dw̃n(s), n ∈ Z.
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This implies that the system of the processes ζn(t), t ≥ 0, n ∈ Z is found. The
theorem is proved. �

Lemma 4.7. Let a sequence of random processes ζn, t ≥ 0, n ∈ Z, satisfy the
conditions 1◦)-5◦) of Theorem 4.1. Then mn(t) < ∞, for all t ≥ 0 and n ∈ Z, i.e.

P{∃j1, j2 ζj1(s) < ζn(s) < ζj2(s), s ≤ t} = 1.

Proof. Let {ni, i ∈ Z} be a strictly increasing sequence of integer number such
that

inf
i∈Z

(xni+1 − xni) = δ > 0, sup
i∈Z

{
1

bni

,
1

bni+1

}
= C < ∞. (4.3)

Fix t > 0 and take x > 2tC‖a‖. Let’s estimate following probability for i < j

P{Mnj (s)−Mni(s) > x, s ≤ t} =

= P

ζnj (s)−
s∫

0

a(ζnj
(r))

mnj (r)
dr − ζni(s) +

s∫
0

a(ζni(r))

mni(r)
dr > x, s ≤ t

 ≤

≤ P
{
ζnj (s)− ζni(s) + 2tC‖a‖ > x, s ≤ t

}
≤ P

{
ζnj (s)− ζni(s) > 0, s ≤ t

}
Next, let i ∈ Z is fixed. For every m ∈ N take ym ∈ R and a number njm such
that

P{Mni(s) < ym, s ≤ t} ≥ 1− 1

2m2

and

P{Mnjm
(s) > ym + x, s ≤ t} ≥ 1− 1

2m2
.

Write

P{Mnjm
(s)−Mni(s) > x, s ≤ t}

≥ P{{Mnjm
(s) > ym + x, s ≤ t} ∩ {Mni(s) < ym, s ≤ t}} ≥ 1− 1

m2
.

Hence

P
{
ζnjm

(s)− ζni(s) > 0, s ≤ t
}
≥ 1− 1

m2
.

By Borel-Cantelli lemma,

P
{
inf
s≤t

(ζnjm
(s)− ζni

(s)) = 0, for infinite numbers m

}
= 0.

So, we have

P
{
∃j ∈ Z inf

s≤t
(ζnj (s)− ζni(s)) > 0

}
= 1.

Similarly

P
{
∃j ∈ Z inf

s≤t
(ζni(s)− ζnj (s)) > 0

}
= 1.

This proves the lemma. �

Theorem 4.8. The conditions 1◦)-5◦) of Theorem 4.1 uniquely determine the
distribution of the process in the space (CRZ ,B (CRZ)).
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Proof. Let a system of random processes ζn, t ≥ 0, n ∈ Z, satisfy the conditions
1◦)-5◦) of Theorem 4.1. Then, by the Doob theorem [16], there exists a system of

Wiener processes w̃n(t), t ≥ 0, n ∈ Z, which are Fζ
t -adapted, such that

ζn(t) = xn +

t∫
0

a(ζn(s))

mn(s)
ds+

t∫
0

σ(ζn(s))√
mn(s)

dw̃n(s).

From condition 5◦) we have

〈w̃i, w̃j〉tI{t<τi,j} = 0, t ≥ 0, i, j ∈ Z.

Similarly to the proof of Lemma 2.7, it is easily seen that ζi(t) = ζj(t) for t ≥ τi,j
and i, j ∈ Z.

Next, let {ni, i ∈ Z} be a strictly increasing sequence of integer numbers
satisfying (4.3). Construct a bijection γ∞ : Z → N as follows. For every i ∈ Z
define

γ∞(i) = lim
N→∞

γN (i+N + 1),

where the bijection γN , N ∈ N, defined above. The existence of limit follows from
the constructions of γN , N ∈ N.

Take a system of independent Wiener processes w′
i(t), t ≥ 0, i ∈ Z, which are

independent of w̃i(t), t ≥ 0, i ∈ Z and denote

δj = inf{t : ζγ−1
∞ (j)(t) ∈ {ζγ−1

∞ (1)(t), . . . , ζγ−1
∞ (j−1)(t)}}, j = 2, 3, . . . .

Put

ŵi(t) =

{
w̃i(t), if t < δγ∞(i),
w̃i(δγ∞(i)) + w′

i(t)− w′
i(δγ∞(i)), else,

where δ1 = +∞ and i ∈ Z. By the Levi theorem (see Theorem 2.6.1 [11]),
ŵi(t), t ≥ 0, i ∈ Z, are independent Wiener processes.

Let N ∈ N and take π0,N ∈ Π2N+1 such that i ∼π0,N j ⇔ ζi−N−1(0) =
ζj−N−1(0) and τ0,N = 0. Denote

τk,N = inf{t > τk−1,N : ζi−N−1(t) = ζj−N−1(t), i 6∼πk−1,N j, i, j ∈ [2N + 1]}
and if τk,N = ∞ then put πk,N = πk−1,N , else take πk,N ∈ Π2N+1 such that

i ∼πk,N j ⇔ ζi−N−1(τk,N ) = ζj−N−1(τk,N ).

Using the system of the processes ŵi(t), t ≥ 0, i = −N, . . . , N , stopping times
τk,N and the elements πk,N , k = 0, . . . , 2N , in reverse order (similar to how it
was done in the proof of Theorem 2.4), one can construct a system of independent
Wiener processes wN

i (t), t ≥ 0, i = −N, . . . , N .
From Lemma 4.7 and the construction of wN

i (t), t ≥ 0, i = −N, . . . , N, N ∈ N,
it follows that for all k ∈ Z and T > 0

P
{
∃N ′ ∀N ≥ N ′ wN

k (t) = wN ′

k (t), t ∈ [0, T ]
}
= 1.

Define wk = lim
N→∞

wN
k , k ∈ Z. It is clear that wk(t), t ≥ 0, k ∈ Z, are independent

Wiener processes.
Let

(ζN−N , . . . , ζNN ) = Λ
(b−N ,...,bN )

γN (ξ−N , . . . , ξN ),
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where ξk(t), t ≥ 0, k ∈ Z, are the solutions of the stochastic differential equations{
dξk(t) = a(ξk(t))dt+ σ(ξk(t))dwk(t),
ξk(0) = xk.

By Lemma 4.6, the sequence (ζNk1
(t), . . . , ζNkp

(t)), t ∈ [0, T ], p ≥ max{k1, . . . , kp}
is stabilized, when N grows. Moreover, (ζk1 , . . . , ζkp) = lim

N→∞
(ζNk1

, . . . , ζNkp
). Since

the distribution of (ζN−N , . . . , ζNN ) is unique in the space CR2N+1 , we have the
uniqueness of the distribution of (. . . , ζ−n, . . . , ζn, . . .). The theorem is proved. �

Definition 4.9. Let ζn(t), t ≥ 0, n ∈ Z, satisfy the conditions 1◦)-5◦) of The-
orem 4.1. The random process (ζn(t))n∈Z, t ≥ 0 is called the process of heavy
diffusion particles with drift in the space RZ.

5. Strictly Markov Property of the Process of Heavy Diffusion
Particles with Drift in the Space RZ.

Let b ∈ (0,∞)Z and lim
n→±∞

{bn ∧ bn+1} > 0. Denote by Kb the set of elements

x ∈ RZ satisfying

lim
n→±∞

{(xn+1 − xn) ∧ bn+1 ∧ bn} > 0.

By Theorem 4.1, for every x ∈ Kb, there exists the process of heavy diffusion
particles with drift ζ(t), t ≥ 0, such that ζ(0) = x. From Lemma 4.6 and the
proof of Theorem 4.8 we conclude that ζ(t) ∈ Kb, for all t ≥ 0. In this section we
show that the process of heavy diffusion particles with drift is the strictly Markov
process in the space Kb. The following lemma holds.

Lemma 5.1. Kb is measurable subset of RZ.

Denote Kb = {A ∩ Kb, A ∈ B
(
RZ)}. Observe that Kb is a metric subspace of

the space RZ with the metric

ρ(x, y) =
∑
k∈Z

1

2k
(|xk − yk| ∧ 1), x, y ∈ RZ.

Moreover, by Lemma 5.1, it follows that the Borel σ-algebra on Kb equals Kb.
Let Pζ

x be the distribution of the process of heavy diffusion particles with drift
ζ(t), t ≥ 0, which starts from x ∈ Kb.

Lemma 5.2. For every set A ∈ B (CKb), the map x 7→ Pζ
x(A) is Kb-measurable.

Proof. To prove the lemma, it suffices to show that, for every bounded function
f ∈ CKb , the map

x 7→ Exf(ζ)

is Kb-measurable.
Let, for x ∈ Kb, ζN (t), t ≥ 0, N ∈ N, be the set of the random processes that

was constructed in the proof of theorem 4.1.
Put

ηNk = ζN(k∧N)∨(−N), k ∈ Z, N ∈ N.
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Then the sequence of the random processes ηN , N ∈ N, converges with probability
1 in the space CKb to the process of heavy diffusion particles with drift ζ. Hence

Exf(η
N ) → Exf(ζ), N → ∞.

From this and the measurability of x 7→ PζN

x (C) for all C ∈ B(RZ) (see Section 3),
the proof of the lemma follows . �

Theorem 5.3. The set of the distributions {Pζ
x, x ∈ Kb} is a strictly Markov

system.

The proof of the theorem is analogous to the proof of Theorem 3.1, considering
the existence of a regular conditional probability on space (Kb,Kb) as it is standard
measurable (see [19], Lemma 5.1 and [11]).

6. Properties of the Process of Heavy Diffusion Particles.

This section is devoted to the investigation of asymptotic properties of the
process of heavy diffusion particles with drift. Specifically, an estimation of as-
ymptotic growth of the mass is established. Next, assume that bk = 1, k ∈ Z, and
xk+1 − xk > δ.

Lemma 6.1. For every integer k,

P
{

lim
t→+∞

δmk(t)

8‖σ‖
√
t ln ln t

≤ 1

}
= 1.

The proof of the lemma is similar to the proof of the property 3◦ [13].
In case where a ≡ 0, σ ≡ 1, bk = 1, xk = k, k ∈ Z, the following asymptotic

properties of the process of heavy diffusion particles ζk(t), t ≥ 0, k ∈ Z, are stated
in [13].

Lemma 6.2. For all k ∈ Z and p ∈ N, the processes ζk(·) and ζk+p(·) coalesce in
finite time, i.e.

P{τk,k+p < +∞} = 1.

Lemma 6.3. For every ε ∈ (0, 1),

P
{

lim
t→+∞

|ζ0(t)|√
2t ln ln t

= 0

}
= 1,

P
{

lim
t→+∞

|ζ0(t)|
4
√
t1−ε

= ∞
}

= 1.
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