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MATHEMATICAL MODEL OF HEAVY DIFFUSION
PARTICLES SYSTEM WITH DRIFT

VITALII KONAROVSKYT*

ABSTRACT. In the article we consider the model of coalescing diffusion parti-
cles which have some masses. At the moment of coalescing the masses of the
particles are summed together and influence their motions. The system of
processes that describes evolution of the particles is constructed by martingale
methods. The Markov property of this system is stated and the asymptotic
restriction on the mass growing of an individual particle is obtained.

1. Introduction

This paper is devoted to the construction a mathematical model of coalescing
diffusion particles on R. We assume that every particle has a mass, which influences
its diffusion and drift. The particles start from a finite or countable set of points,
move independently up to the moment of meeting, after which they coalesce and
their masses are summed.

Systems of coalescing diffusion particles were studied by Arratia R. A. [1, 2], Le
JanY. [15], Norris J. [18], Evans S. S. [8], Dawson D. A. [3, 4], Dorogovtsev A. A. [5,
6], Konarovskyi V. V. [13, 14, 12] and others. Particular attention is paid to a
fairly wide class of coalescing particles systems, in which every subsystem may be
described as a separate system [15, 17, 8, 1, 9]. On the one hand, such systems
are widely used in turbulence theory and statistical mechanics [18, 10], on the
other hand they represent an important interest in terms of mathematics itself.
For example, the fact that the particles which start from an arbitrary compact
set, instantly coalesce to the finite number [8], allows to integrate over a stochastic
flow [5], and the latter, in turn, develops a new stochastic analysis. It should be
noted that the ability to describe the motion of an arbitrary subsystem of the
system, without taking into consideration all the particles of the system, allows to
develop good methods for the study of appropriate mathematical models.

Often there is a need to assume that the particles transfer some mass. Models
in which the particles have mass are actively studied. However, in some models
a mass that is transferred does not influence their motion [3, 4, 21, 20], while in
others, it influences but the particles don’t coalesce (smooth interaction) [5].
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In the study of systems in which the particles transfer some mass, from the
physical point of view it is natural to assume that in coalescing the mass is pre-
served (the mass of the new particle is equal to the sum of the masses of particles,
from which it was formed) and influences their motion. A system of Brownian
particles which have masses that are summed together at the moment of coalesc-
ing was constructively constructed in the papers [13, 14]. Moreover, the diffusion
of particles changes only when particles are changing their masses. In this case,
the random environment in which particles diffuse, is homogeneous. The desire
to make the model that was under consideration earlier, more close to reality (to
include heterogeneity and drift) leads to the fact that we have to consider the
diffusion coefficients, which depend not only on the mass, but also on the position
of the particles. So, it is assumed that the trajectory z(t), ¢ > 0, of a particle
satisfies the following stochastic differential equation

t t
() — SEO) , o0)
where m(t) is a mass of the particles at the moment ¢, w(t), ¢t > 0, some Wiener
process, a, o are bounded Lipschitz continuous functions and in& o(xz) > 0. We
Te

w(t),

call such system of the particles the heavy diffusion particles system with drift.

It should be noted that in this case the system can not be described by spec-
ifying its finite subsystems, as it was done in the work [15, 17, 8, 9]. So, first a
mathematical model of a finite number of particles is constructed, after we do the
passing to the limit as the number of particles tend to infinity. Ability of passing
to the limit ensures that the particles which are far from an isolated subsystem of
finite system of particles, have little effect on it (Lemma 4.6).

This work consists of two parts. In the first part it is constructed the mathe-
matical model of a finite number of particles (Section 2) and its Markov property
is stated (Section 3). In the second part the passing to the limit as the number
of particles tend to infinity is done and some properties of the infinite system of
particles are shown (Sections 5, 6).

2. Finite Particles System

In this section it is studied the case of finite number of particles. The set of
processes that describe such motion, is constructed by coalescing and rescaling of
the solutions of stochastic differential equations

dz;(t) = a(x;(t))dt + o(x;(t))dw;(t),

where w;(t), t >0, i =1,..., N are independent Wiener processes.
Let N € N is fixed. Denote [N] = {1,2,...,N}.

Definition 2.1. A set # = {m1,...,7,} of non-intersection subsets of [N] is called
order partitioning of [N] if

1) U m =[N

=1
2) if I,k € m; then {{AKk,...,IVEk} Cm, foralli=1,...,p.
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The set of all order partitioning of [N] is denoted by II%V.

Every element 7 = {my,...,m,} € IIN generates equivalence between [N] el-
ements. We assume that i ~, j if there exists a number k& such that i,j € m.
Denote an equivalence class that contain the element ¢ € [N] by ’i\ﬂ, i.e. gﬁ ={je
[N]: jr~ngi}.

Let 7 : [N] — [N] be some bijection. Define

iy =" (minv(j)) :
J€lx
Remark 2.2. The map ~ will define range of particle. We will suppose that i-th
particle has range (7).

If (R,r) is some metric space then we denote by Cg the space of continuous
functions from [0, 00) to R with metric

tn(en) =Y o (ma €00 A1) €meC

t k
= 2k \telok)

Consider the subspace BN = {z € RN : z; < 24,4, i = 1,...,N — 1} of the
space RY and the set BN = {b € RNV : b, >0, i =1,..., N}. Elements of space
EV and BY will be used as start points and masses of particles, respectively.

Take b € BY and construct a map A? from {¢ € Cgn : £(0) € EN} to Cgn. It
will be used to define a system of processes that describes the joint motion of the
N particles system. Let & € Cpn and £(0) € EV. Construct an element ¢ = A%¢
by induction.

Take 7% € IV such that

7 ~ 0 ] < 51(0) = 6](0)
Put 7o = 0 and

t
Q=¢ [=——|, t>0,i=1,...,N.
70 ZjE?.,robj

Let 7%, 71, ¢k, i =1,..., N are defined. Denote

Thar =nf{t > 7 ¢F(t) =), i fur j, 3,5 =1,...,N}.

1

If 7,41 = oo then put 7¥*1 = 7% else take an element 7%+ € IV such that

i ~vprer § & CF(Teg1) = (Trg)-
Define

Cik(t)v t < Tp41,

(t=Th41) iz, bi
et LA , tZTk-i-l-

G =
CijrkJrl Tet1 5

je?wkﬂ bj
be __ FN—-1
Put A€ = (N1

Remark 2.3. A, is measurable map from the space (L, L,) to (Cgn,B(Cgn)),
where L,, = {f € Cgn : f(0) € EN}, £, = B(Cgn) N Ly,.

Let’s state the main result of this section.
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Theorem 2.4. Let «y : [N] = [N] be some bijection, v € EV, b € BN and &(t),

t>0,i=1,...,N, be solutions of the stochastic differential equations
d&i(t) = a(&(t))dt + o (&(t))dw;(t), (2.1)
51(0) = T, '
were w;(t), t >0, i =1,...,N, are independent Wiener processes, a,o are some

bounded Lipschitz continuous functions on R and in#RU(x) > 0. Then the random
BAS
process

(= Ab¢

satisfies the following conditions

1°) M; = G(-) — aﬁnci((j)))ds s a continuous square integrable martingale with
0

respect to the filtration
Ff=0(G(s), s<t,i=1,...,N),
where mi(t) = 3 by, A(t) = {j: 3s <1 G(5) = Gls)}:

JEA;(t)
2°) Gi(0) ==, i=1,...,N;
30) Cl(t) S j(t); { <j: t> 07
t
4°) (M), = [ TS s >0,
0

5°) (M, My)ilgear, .3 =0, t > 0, where 7, = inf{t : G;(t) = ()}
Remark 2.5. Further, unless otherwise stated we assume that a, o are a bounded

Lipschitz continuous functions on R and inﬂf@ o(z) > 0.
€

The proof of the theorem follows from the construction of mapping Af’y and the
next lemma.

Lemma 2.6. Let w;(t), t > 0, i = 1,...,N, be a set of independent Wiener
processes, T be a stopping time with respect to the filtration F{* = o(w;(s), s <

t,i=1,...,N) and a random variable £ be strictly positive measurable with respect
to . Then

5 () = wi(t)a ift <,

Dl =\ () + Lol (7 + (6= 7)6) — wi(r)],  else

are independent Wiener processes, moreover, T is a stopping time with respect to
F = o(wi(s), s <t, i =1,...,N) and random variable & is measurable with
respect to F°.

Theorem 2.4 describes evolution of the finite heavy diffusion particles system
with drift. Let’s prove that the conditions 1°)-5°) uniquely determine the distri-
bution of such particles system.

Lemma 2.7. Suppose that a system of processes (;(t),t > 0,4 =1,..., N, satisfies
the condition 1°)-5°) of Theorem 2.4 and ~ : [N] — [N] is some bijection. Then
there exists a system of independent Wiener processes w;i(t), t >0, i=1,..., N,
such that

(=A%,
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where &§;(t), t >0, i =1,...,N, are solutions of the stochastic differential equa-

tions

{ d&i(t) = a(&i(t))dt + o(&(1))dwi(t),
&i(0) = ;.

Proof. Suppose that (;(t), t > 0, i = 1,..., N, satisfy the conditions 1°)-5°) of

Theorem 2.4. We first show that the processes (; and (; coalesce at the moment

of the meeting, for all 4,5 =1,..., N, i.e.

P{Cz’(Ti,j +t) = Cj(ﬁ,j +t), t>0 | Tij < OO} =1.
Since 2&¢) ~ i =1,... N, than by the Doob theorem [16] there exists a

A/ mi(s)
system of Wiener processes w;(t), t > 0,i=1,..., N, adapted to the filtration ]-'f
such that

= +O/ta7(7%j /t\/idwl
7

Take i < j, n € N and denote = 7;; An. From last equation we have

Gt + 7 = Gl ,]+/a<<’“8+7 / G785 i s).
5 ) s—l—r )

where wy (t) = wy(t+77";) —wi(7]), t > 0, k =1, . Usmg the Lipschitz continuity
of the function a and equality ml(t + )H{T j<n} =My t+7" )]I{T <nbs t>0,
we obtain

t

(Gt +775) = Gt + 775 Lrp <n}<L/(<j(s+T'n‘)_<z(S+T Drr <nyds

erT 5+7’ _
5+T m; 5+'r

Since the random variable ]I{T."j<’n} is measurable with respect to .7-'5,,7
T, 1,7

E |:(<j (t + Tirfj) - Cz(t + T ))I[{‘r <n}:|
t
< [ B[t ) = Gls 7Ly <]
0
From Gronwall’s inequality we have

E (Gt + 7)) = Glt+ 7))y, <y | = 0.
By Fatou’s lemma,
E [(¢(t+7i5) = Gt +7ij))ir, ;<o0}] = 0.

Hence, by virtue of the continuity of the processes (; and (;, we obtain needed
equality.
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Next calculate

COLSTO) . N
\/7\/7 Wi, Wi)slgrar, ;3 =

<mi7 mj>t]1{t<‘ri,j} -

Hence
<7ﬂ17i7{17j>tﬂ{t<n,j} =0.
Let’s take a system of Wiener processes wi(t), ¢t > 0, i« = 1,...,N, that are
independent of w;(t), t >0, i =1,..., N, and denote
(5]' = inf{t : C,y—l(j)(t) € {C’y—l(l)(t)» ey Cv—l(j—l)(t)}}a j=2,...,N.
@i(t) = { Ti(t)7 / / 1ft<(5,y(l),

Wy (6’*/(74)) + w; (t) - w; (6’7(1))7 elsev
where 0; = +o00 and i = 1,..., N. By the Levi theorem (see Theorem 2.6.1 [11])
w;(t), t >0, i =1,...,N, are a system of independent Wiener processes. Let
70 € IV such that i ~0 j < (;(0) = ¢;(0) and 79 = 0. Set

T =1inf{t > 11 : G(t) = Cj(t), i1 gy t,5=1,...,N}

7*=1 else take an element 7% € ITV such that

and if 7, = oo then put 7% =
i~k o Gi(Tr) = (7).

Using the system of the processes w;(t), t >0, i =1,..., N, the stopping times 7

and the elements 7%, k = 0,..., N — 1, one can construct a system of independent
Wiener processes w;(t), t >0, i =1,..., N, such that
C = A?yga
where &;(t), t > 0,4 =1,..., N, are solutions of the stochastic differential equa-
tions
{ dgi(t) = a(&(t))dt + o (& (t))dwi(t),
§i(0) = ;.
The lemma is proved. O

Corollary 2.8. The conditions 1°)-5°) of Theorem 2.4 uniquely determine the
distribution of the process in the space (Crn, B (Cgrn)).

Definition 2.9. A system of processes is called the process of heavy diffusion
particles with drift in the space E¥ if it satisfies the conditions 1°)-5°) of Theo-
rem 2.4.

3. Strictly Markov Property of the Process of Heavy Diffusion
Particles with Drift in the Space EV.

In this section the strictly Markov property of the heavy diffusion particles
with drift is stated. Let v : [N] = [N] be some bijection, z € EN, b€ BN, &(t),
t>0,i=1,...,N, be solutions of the stochastic differential equations (2.1) and
¢ = Agg. Denote by P the distribution of the random process ¢ in the space
Cgn. As is well known (see for instance [7]), * — P5(A) is Borel function, for all
Ae B(CRN) Let

PS =P5 o (A2)™!
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Then the map = — P$(A) is Borel function.

Theorem 3.1. The set of the distributions {PS, x € EN} is strictly Markov
system.

. pe . m
Proof. Let F;(Cpnv) = [ [\ Bige (CRN)P”, where B, (CRN)P“ denotes the o-
e>0zxeEN
algebra of cylinder sets {y € Crnv : y(s) € B}, s < t, B € B(RY), that is
completed by all PS-null sets. We will show that, for every bounded F;(Cgn)-
stopping time T,

PEAN {5 olt+7(w) € TN = [ B {0 ul®) € TIPS,
A

where A € F,(Cgn), ' € B (RN), x € EN. This will be sufficient to prove our
theorem.

Fixi=1,...,N. Since M; = y;(-) — [ “(yi((j)))ds is a (PS, B;(Cgw ))-martingale
0

for each x € EV and t — IM;(¢) is right continuous, N; is also a (P, F;(Crw))-
martingale. By Doob’s optional sampling theorem 9;(- +7) is a (P$, Fy 4 (Crn ))-
martingale. In particular, for t > s A € Fsy,(Cgrn) and C € F,(Cgrn), we have
EI [(‘)’tl(t + 7') - ‘J‘(l(s + T))H{AOC}} =0.
This implies that
E. [(OMi(t+7) —Mi(s + 7)a|Fr(Crn)] =0 for PS-a.a. y.

Therefore, if P(y, A) = P$(071(A)|F,(Crr)), A € B(Cgn) is the regular condi-
tional probability with respect to F(Cg~) (it exists by Theorem 1.3.1 [11]), where
0, : Cgx — Cgu is defined by (0,4)(t) = y(t + 7(y)), then P(y,{y : v'(0) =
y(r(y))}) = 1 for PS-a.a. y and N, is a (P(y, -), F¢(Crr))-martingale. Similarly,

t P !’ o~
n? — [ 2 W) ¢ and N (¢t A7)0 (t ATij) are (P(y,-), Ft(Crn))-martingales.
0

m;(s)
Hence, by Lemma 2.7, P(y,-) = ]P’i(T(y)). Thus, for every A € F,(Crnr) and
'enB (RN), we have

/Pi/(7<y/)){y: y(t) € TIPS (dy) = /ﬁ(y’,{y: y(t) € THPL(dy')
A A

— [y vlt+m(w) € DY (Can)PS(dy') = BS(AN(y: ylt+7(0) € T))
A
The theorem is proved. (|

4. Infinite Particle System

In this section the countable particles system is considered. The system of
processes which describes the motion of the particles is constructed from a finite
system of processes by passing to the limit. The following theorem holds.
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Theorem 4.1. Let a,o0 be bounded Lipschitz continuity functions and in&a(z) >
x€

0. Then for every non-decreasing sequence of real numbers {x;, i € Z} and se-
quence of strictly positive real numbers {b;, i € Z} such that

im {(Zps1 — 2n) Abpr1 Aby} >0, (4.1)

n—4oo

there exists a set of processes (;(t), t > 0, i € Z, satisfying

1°) M = ¢G() — f a(gl(s))ds is a continuous square integrable martingale with
respect to the ﬁltmtzon
Fr=oG(s), s<t, i€2),
where mi(t) = 32 by, Ai(t) = {j: Fs <t (i(s) = Gils)};

JEA;(T)
2°) Gi(0) =i, i € Z;
3°) Gi(t) < G(1), i <j, t = 0;
t
4°) (M), = f e &l s, > 0;
5°) (9, M > It<r, ;3 =0, t >0, where 7; ; = inf{t : (;(t) = ¢;(t)}.

Remark 4.2. In case where m;(t) = oo we assume that (t) =0.

In order to prove the theorem, we will state several auxiliary lemmas.
Let {n;, i € Z} be some strictly increasing sequence of real numbers. Fix N € N
and choose a bijection vV : [2N + 1] — [2N + 1] as follows. Denote

Dy={nini+1, i € Z} N[0, N ={p1,-. ..o, }» 1< <Phy
Dy ={ng,n;+1, i € Z} N[-N,0) = {p7,...,pi.}, pi<...<pp,
Let

ZO[0, NI\ Dy ={p},....0%,}, »}<...<pi,
ZN[=-N,00\ Dy = {p1,....p5,}, P1<...<pp,
Put
NIN+1+ph =i, i=1,... ki,
NIN+1=p2)=ki+i, i=1,... ks,
NN+1+p2) =k + ko414, i=1,... ks,
NIN+1—pH=ki4+ka+ks+i, i=1,... kg
Lemma 4.3. Let {n;, i € Z} be a strictly increasing sequence of real numbers,
N'o[2N + 1] — [2N + 1] be the bijection defined above, {x;, i € Z} be a non-

decreasing a sequence of real numbers, {b;, i € Z} be a sequence of strictly positive

numbers and { fr, k € Z} C C(R), fr(0) = xx. Denote

(0Nns g = A (o, f), N EN
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(1) If for some m € N and T > 0 there exist C > 0 and § > 0 such that

t
max{max Ix (), ke{ninj+1;, i=0,...,m, j:0,...7m—1}} < C,
t€[0,T] br

>>C+5,

min fnm+1 (
tef0.7] b, +1

then for all N > n,, andk=—N,... ny,

N N : N
m t) < m t)<C, m t) > C+64.
te[g:)T{’] g (1) = te[(%] I, (1) te[()l,%’] 941 (?) *

(ii) If for some —m € N there exist C < 0 and § < 0 such that

t
i i ") ke{nin 4L i=m+1,...,05=m,...,0 c,
mm{tér[l(}%ﬁ (bk>7 e{ny,n;+1;, i=m+ j=m }}>

max] S, (t) < C+54,

te[0,T bn,,
then for all N > —n,, and k=n,, +1,...,N

. N . N N
m H> m H>C, m £) < C+8.
reforr Ik ) > re[0.T] Gn+1(t) relor] I, () +

The proof of the lemma immediately follows from the construction of the map
AE/bJQN""’bN), N € N, and the choice of the bijection vV, N € N.
Let f: D — R be some bounded function. Define || f|| = sup |f(z)].
xzeD

Lemma 4.4. Let a,0 be a bounded Lipschitz continuous functions and inﬂf% o(x) >
xTE
0. Then for each 6 > 0 and T > 0 the solution of the equations

t t

€(t) = 20 + / a(€(s))ds + / o (€(s))du(s) (4.2)

0 0
satisfies following condition
ol 2
_ > SR | o | N .
P{trer[l(i)%]f(t) xo < 5} >Pw(t)<d in&a(:c)Qt’ te[0,T- o]
e

Lemma 4.5. For every a € R, § > 0 and a Wiener process w(t), t > 0,
P{w(t) +at <4, t€[0,T]}>0.
The proof easily follows from the Girsanov theorem.

Lemma 4.6. Let y,, n € N, be a non-decreasing sequence of real numbers such
that iI;fl(ynH —yn) =06>0,&,(t), t >0, n €N, be the solutions of the equations
n>

t t

Enlt) =y + / a(En(s))ds + / 0 (6n(3))duwn(s),

0 0
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where wy,(t), t >0, n € N, are a set of Wiener processes and

&n =t§3§]£n(t% n Ztg[lolg]ﬁn(t)-

Then for every &, € (0,3),

_ .
P { mox €0 <t 3 €5 vna =6} 1

n—oo | k=1,...,n

The proof of the lemma is similar to the proof of Lemma 5 [13], considering
Lemmas 4.5 and 4.4.

Proof of Theorem 4.1. Since the sequences {x;, i € Z} and {b;, i € Z} satisfy
the inequality (4.1), there exists a strictly increasing sequence of real numbers
{ni, i@ € Z} such that
inf ( )=6>0 ! ! <
inf (2,11 — Xn,) = , S _— .
€L it i bzlelg bnI bni+1 >
Let vV : [2N + 1] — [2N + 1] be a bijection constructed by the sequence
{ni, i € Z} and &,(t), t > 0, n € Z, be the solutions of the equations
t t
6u(0) =2+ [ ala()ds + [ o(6(s)duns),
0 0

where w, (t), t > 0, n € Z, are independent Wiener processes.
Put

(S R = A (e, ),
for each N € N. Fix T" > 0. By Lemmas 4.3 and 4.6

P{IN V>N )= @), t€[0,T]} =1,

for any k € Z, i.e. the sequence {¢/(¢t), t € [0,T]},> is stabilized with probabil-
ity 1, for all integer k. Denote the limit of {¢}’, ¢ € [0,T]}n>k by (i 7. From the
stabilization of {(}}, t € [0,T]},>k it follows that
P{3N Vn >N mj(t) =mjp (), t € [0,T]} =1,
where mp(t) = > b, AR(t) ={j: Is <t Cj”(s) = (7 (s)}, t > 0. Let mpr
JEAR()
denote the limit of the sequence {m}, t € [0,T]|}n>k. Denote (i(t) = Ci,r(t)
and my(t) = mg,r(t), for some T > t. It is clear that such definition is correct,
moreover,

mi(t) = Y by, A(t)={j: Is <t G(s) = Gls)}
JEAi(t)
From the stabilization it follows that one can construct a system of Wiener
processes Wy (t), t > 0, n € Z, such that (w;, w;)¢l<r, ;; =0 and
t

I () JO 1 (1) PN
Ca(t) = n+/ a(s) d +O md n(s), n€.

0
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This implies that the system of the processes (,(t), t > 0, n € Z is found. The
theorem is proved. (I

Lemma 4.7. Let a sequence of random processes (,, t > 0, n € Z, satisfy the
conditions 1°)-5°) of Theorem 4.1. Then my,(t) < oo, for allt > 0 and n € Z, i.e.

P{Sj1,52 G5u(s) <Culs) < (uls), s <th =1,

Proof. Let {n;, i € Z} be a strictly increasing sequence of integer number such

that

. 1 1

Fix ¢ > 0 and take x > 2tC||a||. Let’s estimate following probability for i < j
P{M,,,(s) =My, (s) >z, s <t} =

S S

=P an(s)—/Wdr—cm(s)—k/a(gmgr))dr>Jc, s<ty<
0 0

My, (T) My, (1)

< P{gnj (8) = Cn, (8) + 2tClal| > z, s < t} <P {an (8) = Cn;(8) >0, s< t}

Next, let i € Z is fixed. For every m € N take y,, € R and a number n;  such
that

1
P{M,,.(5) < Ym, s <t} >1— 2m?2
and 1
P{M,, (5)>ym+x, s <t} >1— 53

Write

P{M,,, () — My, (s) >z, s <t}

1

> P{{M,, (8)>yYm+z, s<t}N{Mp,(5) <Ym, s <t} >1— —.

Hence

P{Cn, (8) = Cni(s) >0, s<t}>1— %

By Borel-Cantelli lemma,
P {irg(gnm (s) — Cn,; (s)) =0, for infinite numbers m} =0.
So, we have
P {Hj ez iEE(C"J (s) = Cn,(s)) > 0} =1
Similarly )
P {Elj ez ;Iéi;(cn?(s) —Cn,(8)) > O} =1
This proves the lemma. ) O

Theorem 4.8. The conditions 1°)-5°) of Theorem 4.1 uniquely determine the
distribution of the process in the space (Cgz, B (Cgz)).
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Proof. Let a system of random processes (,, t > 0, n € Z, satisfy the conditions
1°)-5°) of Theorem 4.1. Then, by the Doob theorem [16], there exists a system of
Wiener processes w,,(t), t > 0, n € Z, which are ]-'f—adapted, such that

Y ECCTPNY 10y
Golt) = n+0/ i [ J )

From condition 5°) we have

<1:Ui; ﬂj’j>t]l{t<n,j} = 07 t> Oa Zaj € Z.
Similarly to the proof of Lemma 2.7, it is easily seen that (;(t) = ¢;(t) for t > 7,
and i,5 € Z.

Next, let {n;, i € Z} be a strictly increasing sequence of integer numbers
satisfying (4.3). Construct a bijection v : Z — N as follows. For every i € Z
define

Yooli) = lim AN (i + N +1),
N —o0
where the bijection vV, N € N, defined above. The existence of limit follows from
the constructions of vV, N € N.

Take a system of independent Wiener processes w;(t), ¢ > 0, i € Z, which are
independent of w;(t), t > 0, ¢ € Z and denote

d; = inf{t: C%_ol(j)(t) € {C%_ol(l)(t), .. .74%_01(%1)(15)}}, ji=2,3,....
Put
@(t) = { w;(t), ift<5%c(,;),
! Wi (04 (5)) + wi(t) —wi(dy (), else,

where §; = 400 and i € Z. By the Levi theorem (see Theorem 2.6.1 [11]),
w;(t), t >0, i € Z, are independent Wiener processes.

Let N € N and take 7%~ ¢ II?N*! such that i ~ o~ j & (_n_1(0) =
¢j—n—-1(0) and 79,y = 0. Denote

Tk,N = inf{t > Tp—1,N ' Ci—N—l(t) = Cj—N—l(t)a 7 ’%/ﬂ.k—l,N j, i,j S [2N+ 1]}
and if 7, 5 = oo then put gk N = gh=1L.N else take 7%V € 12N+ such that

i ~pen J < Gona1(Th,N) = GonNa1(Tk,N)-
Using the system of the processes w;(t), t > 0, ¢ = —N,..., N, stopping times
Ti,~n and the elements kN k= 0,...,2N, in reverse order (similar to how it
was done in the proof of Theorem 2.4), one can construct a system of independent
Wiener processes wX (t), t >0, i = —N,..., N.
From Lemma 4.7 and the construction of w¥ (¢), t >0, i = —N,..., N, N € N,
it follows that for all k € Z and T' > 0

P{aN’ YN > N wi¥ (t) = w (¢), t e [07T]} -

Define wy, = A}im wl, k € Z. 1t is clear that wy(t), t > 0, k € Z, are independent
— 00
Wiener processes.
Let

(]_vNy,C]]\\[[):A,(YbJGN """" bN)(g—Na“'agN)a
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where & (t), t > 0, k € Z, are the solutions of the stochastic differential equations

{ dk(t) = a(&k(t))dt + o (& (t))dwi(t),

&k(0) = .
By Lemma 4.6, the sequence (¢} (t), .. ., C,i\;(t)), t€ 0,7, p>max{k,..., kp}
is stabilized, when N grows. Moreover, ((k,,...,Ck,) = Nhgloo(cﬁ’ ... ,C,i\i). Since
the distribution of ((Ny,...,(¥) is unique in the space Cgen+1, we have the

uniqueness of the distribution of (...,{_yn,...,Cy,...). The theorem is proved. O

Definition 4.9. Let (,(t), t > 0,n € Z, satisfy the conditions 1°)-5°) of The-
orem 4.1. The random process (¢, (t))nez, t > 0 is called the process of heavy
diffusion particles with drift in the space RZ.

5. Strictly Markov Property of the Process of Heavy Diffusion
Particles with Drift in the Space R”.

Let b € (0,00)% and @ {b, Abys1} > 0. Denote by K® the set of elements
n o

r € R? satisfying
m {(-/I;n-‘,-l - Z‘n) A bn-‘rl N bn} > 0.

n—=4oo

By Theorem 4.1, for every 2 € K?, there exists the process of heavy diffusion
particles with drift ¢(¢), ¢ > 0, such that ¢(0) = z. From Lemma 4.6 and the
proof of Theorem 4.8 we conclude that ((t) € K?, for all ¢ > 0. In this section we
show that the process of heavy diffusion particles with drift is the strictly Markov
process in the space Kb. The following lemma holds.

Lemma 5.1. K is measurable subset of R”.

Denote K® = {ANK®’ AecB (RZ)}. Observe that K is a metric subspace of
the space R? with the metric

1
P(%Zl)zzzjﬂl“k—yk“\l)a x7yeRZ-
kEZ

Moreover, by Lemma 5.1, it follows that the Borel o-algebra on Kb equals K°.
Let P be the distribution of the process of heavy diffusion particles with drift
¢(t), t > 0, which starts from z € K°.

Lemma 5.2. For every set A € B(Cks), the map x + PS(A) is K-measurable.

Proof. To prove the lemma, it suffices to show that, for every bounded function
f € Cks, the map

is K’-measurable.

Let, for x € K® ¢N(t), t >0, N € N, be the set of the random processes that
was constructed in the proof of theorem 4.1.

Put

M = (Ganyvn)y kE€Z, NeN.
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Then the sequence of the random processes n%V, N € N, converges with probability
1 in the space Cks to the process of heavy diffusion particles with drift (. Hence

E.f(n") = E.f((), N —oc.

From this and the measurability of x PgN (C) for all C € B(RZ) (see Section 3),
the proof of the lemma follows . O

Theorem 5.3. The set of the distributions {P$, x € K} is a strictly Markov
system.

The proof of the theorem is analogous to the proof of Theorem 3.1, considering
the existence of a regular conditional probability on space (K?, K?) as it is standard
measurable (see [19], Lemma 5.1 and [11]).

6. Properties of the Process of Heavy Diffusion Particles.

This section is devoted to the investigation of asymptotic properties of the
process of heavy diffusion particles with drift. Specifically, an estimation of as-
ymptotic growth of the mass is established. Next, assume that by, = 1, k € Z, and
Tpy1 — Tp > 0.

Lemma 6.1. For every integer k,

—_— 5mk(t) }
PS lim ————<1;=1.
{t—“roo 8llo|| vVt Inlnt —

The proof of the lemma is similar to the proof of the property 3° [13].

In case where a =0, 0 =1, by = 1, z, = k, k € Z, the following asymptotic
properties of the process of heavy diffusion particles (x(t), t > 0,k € Z, are stated
in [13].

Lemma 6.2. For allk € Z and p € N, the processes (i(-) and Cryp(-) coalesce in
finite time, i.e.
P{Tk’ker < +OO} = 1.

Lemma 6.3. For every e € (0,1),
: [So(®)] }
P! lim —20 gl g
{'HJFOO V2t Inlnt

i 1)
P{ it~} -1
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