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Abstract. We construct a family of semimartingales that describes the behavior of a particle system with sticky-reflecting interaction.
The model is a physical improvement of the Howitt–Warren flow (Ann. Probab. 37 (2009) 1237–1272), an infinite system of diffusion
particles on the real line that sticky-reflect from each other. But now particles have masses obeying the conservation law and the
diffusion rate of each particle depends on its mass. The equation which describes the evolution of the particle system is a new type
of equations in infinite-dimensional space and can be interpreted as an infinite-dimensional analog of the equation for sticky-reflected
Brownian motion. The particle model appears as a particular solution to the corrected version of the Dean–Kawasaki equation.

Résumé. Nous construisons une famille de semimartingales décrivant le comportement d’un système de particules avec interactions à
effet réflectif et adhésif. Ce modèle est un amélioration plus physique du flot de Howitt–Warren (Ann. Probab. 37 (2009) 1237–1272),
un système infini de particules diffusives sur la droite réelle interagissant avec effet réflectif et adhésif. Dans cet article, les particules
ont désormais des masses qui satisfont à la loi de conservation, et le coefficient de diffusion de chaque particule dépend de sa masse.
L’équation décrivant l’évolution du système de particules est un nouveau type d’équation sur un espace de dimension infinie et peut
être interprétée comme un analogue infini-dimensionnel de l’équation satisfaite par le mouvement brownien à comportement réflectif
et adhésif. Le modèle particulaire apparaît comme une solution particulière d’une version corrigée de l’équation de Dean–Kawasaki.
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1. Introduction

In [34], the author together with von Renesse proposed a class of measure-valued processes, so-called reversible
coalescing-fragmentating Wasserstein dynamics or shortly reversible CFWD, which describes the evolution of mass of
particles that interact via some sticky-reflecting mechanism. The construction was aimed at the generalization of a Brow-
nian motion of a single point (atom) to the case of infinite points (measures) on the real line. The main requirement of
such a construction was that the process μt had to be reversible in time and its short time asymptotics had to be covered
by the Varadhan formula of the form

P{μt+ε = ν} ∼ e− d2
W (μt ,ν)

2ε , ε � 1,

where dW denotes the usual Wasserstein distance on the space of probability measures P2(R) on the real line with a
finite second moment. This led to a new family of measure-valued processes which are naturally connected with the
Riemannian structure of the Wasserstein space of probabilities measures and also to a new class of associated invariant
measures for those processes.
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The reversible CFWD also solves the corrected Dean–Kawasaki equation1

(1) dμt = �μ∗
t dt + div(

√
μt dWt)

on P2(R), where μ∗
t =∑x∈suppμt

δx and dW is a space-time white noise. We remark that the measure μt is purely atomic
with a finite number of atoms for almost all t ≥ 0 [30]. Therefore, μ∗

t is well defined for almost all t . It is known that
the modified massive Arratia flow satisfies the same equation (see [35]). This in particular implies the non-uniqueness of
solutions to (1).

The construction in [34] was based on the Dirichlet form approach. There we proposed a new family of measures on the
space P2(R) which depend on the interaction potential between particles and then proved an integration by parts formula.
This allowed to introduce the naturally associated Dirichlet form E and construct the corresponding measure-valued
process μt , t ∈ [0, τ ), (a family of processes that depend on the interacting potential between particles). In spite of the
power of the Dirichlet form method, such a description has many shortcomings which make the model very complicated
for further investigation. In particular,

• the process μt , t ∈ [0, τ ), was defined up to the life time τ and it is unclear in general if the process globally exists,
i.e., if τ is infinite a.s.;

• μt , t ∈ [0, τ ), was defined only for initial distributions μ0 outside an unknown E -exceptional set;
• although the process describes the evolution of the mass of interacting particles, one can say nothing about the behavior

of individual particles;
• the construction does not cover the coalescent interaction between particles that can be considered as a critical case of

sticky-reflecting behavior.

The present paper is aimed at the elimination of those defects. For this, we choose a completely different construction.
We will approximate an infinite particle system by a finite number of particles. This allows us to construct a continuum
collection of ordered continuous semimartingales on the real line which satisfy some natural properties. We also note that
the obtained system can be considered as a physical improvement of the Howitt–Warren flow [21,45] which describes the
family of Brownian motions with sticky-reflected interaction. The inclusion of the particle mass into the system which
influences their motion makes our model more interesting and natural from the physical point of view.

Although the particle model constructed here satisfies the same stochastic differential equation (see equation (3) below)
as one constructed in [34] and has the same intuitive description, discussed in Section 1.1, it remains unclear if these two
models coincide. The reason is that the uniqueness of solutions to the equation describing the particle systems remains a
complicated open problem. However, we conjecture that this equation admits a unique weak solution.

1.1. Description of the model and formulation of the main results

We consider a family of diffusion particles on the real line which intuitively can be described as follows. Particles start
from a set of points and move keeping their order. When particles collide, they coalesce and form clusters (sets of particles
occupying the same positions). We assume that each particle has an “infinitesimal” mass and the mass of every cluster
equals the total mass of its particles. All clusters fluctuate independently of each other until the moment of collision as
Brownian motions with diffusion rates inversely proportional to their masses. Forming a cluster, particles immediately
experience a drift force defined by an interaction potential which makes particles leave the cluster.

Let us assume that the total mass of the system is finite. This assumption is needed to overcome some additional
difficulties which can occur considering systems of infinite total muss. Moreover, we will assume that the total mass
equals one for simplicity. The case of any finite total muss of the system can be obtained by the rescaling of the considered
model. Next, we describe the dynamics more precisely. Let every particle in the system be labeled by a point u from [0,1]
and its position at time t ≥ 0 be denoted by X(u, t). Since particles keep their order, we assume that X(u, t) ≤ X(v, t)

for all u < v and t . Denote the cluster containing particle u by

π(u, t) = {v ∈ (0,1) : X(u, t) = X(v, t)
}
.

We define the mass m(u, t) of the cluster π(u, t) at time t as its length. For convenience, we will also call m(u, t) the
mass of particle u at time t . According to our requirements, for every u the process X(u, ·) has to be a continuous
semimartingale with quadratic variation whose derivative equals 1

m(u,t)
at time t , that is,

d
[
X(u, ·)]

t
= dt

m(u, t)
.

1The Dean–Kawasaki equation is a prototype of equations appearing in fluctuating hydrodynamic theory and has a broad application in physics (see,
e.g., [2,8–12,18,26,27,38,39,41,42]). In [32,33], we showed that the original Dean–Kawasaki equation has either trivial solutions or is ill-posed.
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Since we have assumed that particles move independently up to their collision, it would be reasonable to require that
X(u, t) and X(v, t) are independent up to the meeting. The problem is that the processes always depend on each other
via the mass of their clusters. Therefore, we replace the condition of independence by zero covariance2

d
[
X(u, ·),X(v, ·)]

t
= 0 provided X(u, t) 	= X(v, t).

In order to define the splitting between particles, we prescribe a number ξ(u) to each particle u, where ξ is non-decreasing
function. This number is called an interaction potential of particle u. Then particle u, which belongs to the cluster π(u, t)

at time t , has the drift force

ξ(u) − 1

m(u, t)

∫
π(u,t)

ξ(v) dv

that is the difference between own potential and the average potential over the cluster. Summarizing the assumptions
above, the family of process X(u, ·), u ∈ [0,1], formally has to solve the following system of equations

(2) dX(u, t) = 1

m(u, t)

∫
π(u,t)

W(dv, dt) +
(

ξ(u) − 1

m(u, t)

∫
π(u,t)

ξ(v) dv

)
dt,

u ∈ [0,1], under the restriction X(u, t) ≤ X(v, t), u < v, t ≥ 0, where W is a Brownian sheet. We also provide (2) with
the initial condition X(u,0) = g(u).

Let D([a, b],E) denote the Skorohod space of càdlág functions from [a, b] to a Polish space E with the usual Skoro-
hod topology. We say that a function f : [0,1] → R is piecewise γ -Hölder continuous if there exists an ordered partition
U = {ui, i = 1, . . . , l} of [0,1] such that f is γ -Hölder continuous on each interval (ui−1, ui), i ∈ [l] := {1, . . . , l}. The
first main result of the present paper reads as follows.

Theorem 1.1. Let g, ξ ∈ D([0,1],R) be non-decreasing piecewise 1
2+-Hölder continuous3 functions on [0,1]. Then

there exists a random element X = {X(u, t), t ≥ 0, u ∈ [0,1]} in D([0,1],C[0,∞)) such that

(R1) for each u ∈ [0,1], X(u,0) = g(u);
(R2) for each u < v from [0,1] and t ≥ 0, X(u, t) ≤ X(v, t);
(R3) the process

MX(u, t) := X(u, t) − g(u) −
∫ t

0

(
ξ(u) − 1

mX(u, s)

∫
πX(u,s)

ξ(v) dv

)
ds, t ≥ 0,

is a continuous square-integrable (FX
t )-martingale for each u ∈ (0,1) and a continuous local (FX

t )-martingale
for each u ∈ {0,1}, where (FX

t )t≥0 is the natural filtration generated4 by X, πX(u, t) := {v : X(u, t) = X(v, t)}
and mX(u, t) = LebπX(u, t);

(R4) for each u,v ∈ [0,1] the joint quadratic variation of MX(u, ·) and MX(v, ·) equals

[
MX(u, ·),MX(v, ·)]

t
=
∫ t

0

I{X(u,s)=X(v,s)}
mX(u, s)

ds, t ≥ 0.

Remark 1.2. The processes MX(0, ·) and MX(1, ·) are also square-integrable martingales under the assumptions of
Theorem 1.1. This directly follows from the fact that they are continuous local martingales and the estimate of their
quadratic variation in Corollary 2.9. We do not include this result into condition (R3) to preserve the equivalence between
(R1)–(R4) and SDE (3) below (see Theorem 1.3 for more details).

We note that the piecewise Hölder continuity of functions g and ξ is a technical assumption required by our argument
(see Remark 3.5 below for more details), and we believe it can be removed.

The random element X from Theorem 1.1 can be interpreted as a weak solution to the system of equations (2). In
particular, for the coalescing particle system (if ξ = 0), Marx in [40] showed that for any family of processes X which
satisfies (R1)–(R4) there exists a Brownian sheet W (possibly on an extended probability space) such that X solves

2If particles would not change their diffusion rate then this condition would be equivalent to the independent motion of particles at the time when they
occupy distinct positions.
3Hereafter we mean that there exists ε > 0 such that the function is ( 1

2 + ε)-Hölder continuous.
4See Section 1.2 and Remark 1.6 for the precise definition.
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Fig. 1. The modified massive Arratia flow (left), where particles started from every point of an interval, and the sticky-reflected particle system (right)
with interacting potential ξ which equals the identity function, where all particles started at 0. Grayscale colour coding is illustrating the atom sizes.

Fig. 2. The clusters behaviour of the modified massive Arratia flow (left) and the sticky-reflected particle system (right), where at every time t dots
represent the ends of clusters, i.e., the ends of the intervals {v : X(u, t) = X(v, t)}, u ∈ [0,1].

system of equations (2). We believe that the same result can be obtained for any interaction potential ξ , using the same
argument.

We would like to compare the model with the modified massive Arratia flow described by a system of continuous
martingales on the real line which satisfies the same conditions with ξ = 0 [28,29,35], see also [3,4,13,14,17,36,44,45]
for the classical Arratia flow and the Brownian web, where particles coalesce and do not change their diffusion rate, and
[45–47] for the Brownian net, which is the massless version of the flow constructed here. The main difference between
the constructed particle system and the modified massive Arratia flow is an additional drift potential which leads to the
dispersion of particles and makes the model very complicated for construction. Moreover, methods proposed there cannot
be applied to the sticky-reflected particle system. In Figures 1 and 2, computer simulations of both systems are given.

In order to construct the family of processes X, we use the approximation of the model by finite particle systems.
We first state some estimates for the evolution of particle masses in Section 2. It allows proving the tightness. The main
problem is to check that the limiting system of processes satisfies properties (R1)–(R4). To show this, we replace system
of equations (2) with an equation in some Hilbert space that has discontinuous coefficients and prove that the new equation
has solutions. After that, we show the connection between solutions to the new equation and system (2).

For p ∈ [1,∞] let L
↑
p denote the space of non-decreasing p-integrable (with respect to the Lebesgue measure on [0,1]

denoted by Leb) functions from [0,1] to R, and prf be the projection in L2 := L2([0,1],Leb) on the linear subspace
L2(f ) of σ(f )-measurable functions. Let also Wt , t ≥ 0, be a cylindrical Wiener process on L2. System of equations (2)
can be rewritten as one SDE

(3) dXt = prXt
dWt + (ξ − prXt

ξ) dt, X0 = g

in the space L
↑
2 due to the form of the projection operator, where Xt = X(·, t) ∈ L

↑
2 . The second contribution of the

present paper is the development of new methods for solving equation (3), and the establishing of a connection between
solutions to such an equation and families of semimartingales satisfying (R1)–(R4). We remark that equation (3) can be
interpreted as an infinite-dimensional analog of the equation for a sticky-reflected Brownian motion on the half-line

dx(t) = I{x(t)>0} dw(t) + λI{x(t)=0} dt
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for which the question of the existence and uniqueness of solutions is non-trivial (see, e.g., [15]). In our case, the unique-
ness of solutions to (3) remains an open problem.

Theorem 1.3.

(i) For each δ > 0, g ∈ L
↑
2+δ and ξ ∈ L

↑∞ there exists a weak solution5 to SDE (3).
(ii) Let Y = {Y(u, t), u ∈ [0,1], t ≥ 0} be a random element in the Skorohod space D([0,1],C[0,∞)) and Xt , t ≥ 0, be

a continuous process in L
↑
2 such that for every t ≥ 0 almost surely Xt = Y(·, t) in L2 and E‖Xt‖2

L2
< ∞. Then the

random element Y satisfies (R1)–(R4) if and only if the process Xt , t ≥ 0, is a weak solution to (3).

We call a weak solution to equation (3) a coalescing-fragmentating Wasserstein dynamics or shortly a CFWD. Accord-
ing to Theorem 1.3(ii), a random element in the Skorohod space D([0,1],C[0,∞)) satisfying (R1)–(R4) is also called
a CFWD.

Theorem 1.1 will immediately follow from Theorem 1.3 and the existence of a solution to (3) with a modification from
the Skorohod space D([0,1],C[0,∞)) (see Section 4.4).

Next we briefly describe the main idea of proof of Theorem 1.3. The first part of the theorem is proved using a finite
particle approximation. We first construct a solution to equation (3) if ξ and g are step functions, using the Dirichlet form
approach. This corresponds to the case of a finite particle system. Then we approximate any ξ and g by step functions
and show that solutions to (3) are tight and every limiting process solves equation (3). The tightness argument is based on
the control of the particle mass, and is rather standard. We recall that, in the case of the modified massive Arratia flow (if
ξ = 0), the tightness followed from the estimate

P
{
m(u, t) < r

}≤ C
√

r√
t

(
g(u + r) − g(u)

)
[29, Lemma 4.1], which can be proved using the coalescing of particles. Now, particles do not coalesce. But we can
control the integral

∫ t

0 P{m(u, s) < r}ds (see lemmas 2.4, 2.7 and 2.8). This is enough for the tightness in Section 3.
A very complicated problem is to check that a limiting process satisfies SDE (3). For the modified massive Arratia

flow, we showed this, using the fact that the number of distinct particles at each positive time is finite and decreases as
time increases because particles coalesce (see Theorem 5.5 [29]). In the sticky-reflected case of interaction, the model
also consists of a finite number of distinct particles (clusters) for almost all times. However, an infinite number of distinct
particles can appear. More precisely, with probability 1 the system admits an infinite number of distinct particles on a
dense subset of the time interval if and only if ξ takes an infinite number of values [30, Theorem 1.1]. Therefore, we
cannot use the methods which work for the modified massive Arratia flow.

Let us roughly explain a new approach which we propose in order to show that a limiting process solves (3). Let for
every n ≥ 1, Xn be a solution to (3) with initial condition gn and interacting potential ξn. Then the L2-valued martingale
part MXn of Xn has the quadratic variation process ⟪MXn⟫t = ∫ t

0 prXn
s

ds, s ≥ 0, which is a continuous operator-valued
process (for more details see Definition 1.7). We assume that {Xn,n ≥ 1} converges to X and the quadratic variations
{⟪MXn⟫, n ≥ 1} to

∫ ·
0 Ps ds, where Ps , s ≥ 0, is an oparator-valued process. For the identification of the limit, it is

needed to prove that Ps = prXs
for almost all s. Since Xn, n ≥ 1, are continuous semimartingales, X also is a continuous

semimartingale with quadratic variation
∫ ·

0 Ps ds. In order to show that Ps = prXs
, we use the following trick. By the

lower semi-continuity of the map g �→ ‖prg h‖L2 (see Lemma A.7) and the fact that prXn
t

is a projection, it is possible to

show that Pt is also a projection but maybe on a larger space than L2(Xt ). Next, let Zt , t ≥ 0, be a continuous L
↑
2 -valued

martingale with quadratic variation
∫ t

0 LsL
∗
s ds, t ≥ 0, where Lt , t ≥ 0, is an adapted operator-valued process. We prove

in Proposition A.12 that Lt ◦ prZt
= Lt for almost all t . This immediately implies Pt = Pt ◦ prXt

= prXt
. The proposed

method will also work for a wider class of SDEs on L
↑
2 with discontinuous coefficients. Recently, in [31], we also adapted

this approach to another SPDE with discontinuous coefficients, which we call a sticky-reflected stochastic heat equation.
Note that Proposition A.12 seems to be of independent interest.

1.2. Preliminaries and notation

We will denote the set of non-decreasing càdlág functions from (0,1) to R by D↑. The set of all step functions from D↑
with a finite number of jumps is denoted by S↑. If g ∈ D↑ is bounded, then we set

g(0) = lim
u↓0

g(u) and g(1) = lim
u↑1

g(u).

5See Definition 1.7.
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Let (E,F,P ) be a complete probability space and H ⊂ F . Then σ ∗(H) denotes the P -completion of σ(H). If g :
E → R is an F -measurable function, then σ ∗(g) := σ ∗({g−1(A) : A ∈ B(R)}), where B(F ) denotes the Borel σ -field on
a topological space F .

Remark 1.4. We note that g1 = g2 P -a.e. implies σ ∗(g1) = σ ∗(g2).

For p ∈ [1,+∞] we denote the space of p-integrable (essential bounded, if p = +∞) functions (more precisely
equivalence classes) from [0,1] to R by Lp . The usual norm in Lp is denoted by ‖ · ‖Lp and the usual inner product in
L2 by (·, ·)L2 .

For a Borel measurable function g : (0,1) → R the space of all σ ∗(g)-measurable functions from L2 is denoted by
L2(g). By Remark 1.4, L2(g) is well-defined for every equivalence class g from Lp .

Let L2(L2) denote the space of Hilbert–Schmidt operators on L2 with the inner product given by

(4) (A,B)HS =
∞∑
i=1

(Aei,Bei)L2 , A,B ∈ L2(L2),

where {ei, i ∈ N} is an orthonormal basis of L2. We note that the inner product does not depend on the choice of basis
{ei, i ∈ N}. The corresponding norm in L2(L2) is denoted by ‖ · ‖HS.

If H is a Hilbert space with the inner product (·, ·)H , then L2([0, T ],H) will denote the Hilbert space of 2-integrable
H -valued functions on [0, T ] endowed with the inner product

(f, g)T ,H =
∫ T

0
(ft , gt )H dt, f, g ∈ L2

([0, T ],H ).
The corresponding norm is denoted by ‖ · ‖T ,H . If H = L2(L2), then the inner product and the norm will be denoted by
(·, ·)T ,HS and ‖ · ‖T ,HS, respectively.

Let C(I,E) denote the space of continuous functions from I ⊂ R to a Banach space E equipped with the topology
of uniform convergence on compacts. For simplicity we also write C[0, T ] (resp. C[0,∞)) instead of C([0, T ],R) (resp.
C([0,∞),R)). The uniform norm in C[0, T ] is denoted by ‖ · ‖C[0,T ].

The set of all infinitely differentiable real-valued functions on Rm with all partial derivatives bounded is denoted by
C∞

b (Rm) and C∞
0 (Rm) is the set of functions from C∞

b (Rm) with compact support.
Let D([a, b],E) denote the space of càdlág functions from [a, b] to a Polish space E with the usual Skorohod distance

(see, e.g., Section 3 [5]6 and Section A.5).
The Lebesgue measure on R will be denoted by Leb.
The set of functions from Lp which have a non-decreasing modification is denoted by L

↑
p . By Proposition A.1 [29],

L
↑
2 is a closed set in L2 and each f ∈ L

↑
2 has a unique modification from D↑. Therefore, considering an element from L

↑
2

as a function, we will always take its modification from D↑. We also set L
↑
p(g) := L

↑
p ∩Lp(g) for every Borel measurable

function g : (0,1) → R and p ∈ [1,+∞].
For g ∈ L

↑
2 we denote the projection operator in L2 on the closed linear subspace L2(g) by prg . Let #g denote the

number of distinct points of the set {g(u),u ∈ (0,1)}, where the modification g is taken from D↑. We will prove in
Section A.2 (see Lemma A.6 there) that #g = ‖prg ‖2

HS.

Remark 1.5. Since prg maps L
↑
2 into L

↑
2 (see, e.g., Lemma A.4 below), for every ξ ∈ L

↑
2 and u ∈ (0,1) we will under-

stand (prg ξ)(u) as a value of the function f ∈ D↑ at u, where prg ξ = f a.e., and

(prg ξ)(0) = lim
u↓0

f (u) and (prg ξ)(1) = lim
u↑1

f (u),

if the limits exist.

We denote the filtration generated by a process Xt , t ≥ 0, by (F◦,X
t )t≥0, that is, F◦,X

t = σ(Xt , s ≤ t), t ≥ 0. The
smallest right-continuous and complete extension of (F◦,X

t )t≥0 is denoted by (FX
t )t≥0 (see, e.g., Lemma 7.8 [25] for

existence). The filtration (FX
t )t≥0 is called the natural filtration generated by X.

6In contrast to the definition of the Skorohod space in [5], we additionally assume that each function from D([a, b],E) is continuous at b.
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Remark 1.6. If Xt , t ≥ 0, is an L2-valued process and {Y(u, t), u ∈ [0,1], t ≥ 0} is a random element in D([0,1],
C[0,∞)) such that Xt = Y(·, t) in L2 a.s. for all t ≥ 0, then (FX

t )t≥0 coincides with the smallest right-continuous and
complete extension of the filtration (

σ
(
Y(u, s), u ∈ [0,1], s ≤ t

))
t≥0.

This can be proved using, e.g., Lemma 4.12 below.

Now we give a definition of weak solution to equation (3).

Definition 1.7. An L
↑
2 -valued random process Xt , t ≥ 0, is called a weak solution to SDE (3) if

(E1) X0 = g;
(E2) X ∈ C([0,∞),L

↑
2 );

(E3) E‖Xt‖2
L2

< ∞ for all t ≥ 0;
(E4) the process

MX
t := Xt − g −

∫ t

0
(ξ − prXs

ξ) ds, t ≥ 0,

is a continuous square-integrable (FX)-martingale7 in L2 with quadratic variation process

⟪MX⟫t =
∫ t

0
prXs

ds, t ≥ 0.

Remark 1.8.

(i) The process

AX
t :=
∫ t

0
(ξ − prXs

ξ) ds, t ≥ 0,

is continuous in L2.
(ii) Condition (E4) is equivalent to

(E′4) For each t ≥ 0 E‖MX
t ‖2

L2
< ∞ and for each h ∈ L2 the process

(
MX

t ,h
)
L2

= (Xt , h)L2 − (g,h)L2 −
∫ t

0
(ξ − prXs

ξ,h)L2 ds, t ≥ 0,

is a continuous square-integrable (FX)-martingale with quadratic variation

[(
MX· , h

)
L2

]
t
=
∫ t

0
‖prXs

h‖2
L2

ds, t ≥ 0.

(iii) For each t ≥ 0 E‖Xt‖2
L2

< ∞ provided E‖MX
t ‖2

L2
< ∞, since ‖AX

t ‖L2 ≤ 2‖ξ‖L2 t .

(iv) Using the same argument as in the proof of Lemma 2.1 [20], one can show that the increasing process of MX is
given by 〈

MX
〉
t
=
∫ t

0
‖prXs

‖2
HS ds, t ≥ 0,

that is, ∥∥MX
t

∥∥2
L2

−
∫ t

0
‖prXs

‖2
HS ds, t ≥ 0,

is an (FX)-martingale. In particular, E‖MX
t ‖2

L2
= E
∫ t

0 ‖prXs
‖2

HS ds < ∞ for all t ≥ 0.

7See Section 2.1.3 [20] for the introduction to martingales in a Hilbert space.
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(v) If X is a weak solution to SDE (3), then there exists a cylindrical Wiener process Wt, t ≥ 0, in L2 (maybe on an
extended probability space) such that

Xt = g +
∫ t

0
prXs

dWs +
∫ t

0
(ξ − prXs

ξ) ds, t ≥ 0,

by Corollary 2.2 [20].

1.3. Organisation of paper

In Section 2, a priori estimates for a CFWD as a family of semimartingales satisfying (R1)–(R4) are obtained. We will
use them in Section 3 in order to prove the tightness of a sequence of CFWDs in the space of continuous L2-valued
paths (Section 3.1) and in the Skorohod space D([0,1],C[0,∞)) (Section 3.2). Using the tightness results, a CFWD for
a general initial condition and a general interaction potential will be constructed as a limit of finite particle systems in
Section 4. We first recall the construction of a reversible CFWD via the Dirichlet form approach in Section 4.1, which is
needed for the description of a finite sticky-reflect particle system. Then we show the existence of a weak solution to SDE
(3) in Section 4.2. This gives the proof of Theorem 1.3(i). The equivalence between two descriptions of the CFWD (proof
of the second part of Theorem 1.3) is stated in Section 4.3. After this, we show that there exists a version of CFWD from
the Skorohod space D([0,1],C[0,∞)) that immediately implies the statement of Theorem 1.1. Auxiliary statements
are given in the appendix. In particular, an estimate of the sitting time at zero of a positive continuous semimartingale is
obtained in Section A.1. Properties of projection operators appearing as coefficients of SDE (3) are studied in Section A.2.
In Section A.3, we realize the idea described in the introduction which is used in Section 4.2.2 in order to show that a limit
of CFWDs is again a CFWD. The property of the quadratic variation of continuous L

↑
2 -valued martingales mentioned in

the introduction and also needed for the identification of the limit of CFWDs are proved in Section A.4.

2. A priori estimates for CFWD

The goal of this section is to get some a priori estimates of particle masses in a CFWD which we will use for the proof
of the existence of CFWD. During this section we assume that g, ξ ∈ D↑ are fixed and {X(u, t), u ∈ [0,1], t ≥ 0} is a
random element in D([0,1],C[0,∞)) defined on a complete probability space (�,F,P) and satisfies (R1)–(R4). We
recall that (FX

t )t≥0 coincides with the smallest right-continuous and complete extension of the filtration(
σ
(
X(u, s), u ∈ [0,1], s ≤ t

))
t≥0,

by Remark 1.6.
For notational convenience, we set Ft := FX

t , m(u, t) := mX(u, t) and M(u, t) := MX(u, t), u ∈ [0,1], t ≥ 0, where
mX and MX were defined in Theorem 1.1.

2.1. Coalescing properties

In this section, we show that particles with the same interaction potential coalesce.

Lemma 2.1. If ξ(u) = ξ(v) for some u,v ∈ [0,1], then

(5) P
{
X(u, t) = X(v, t) implies X(u, t + s) = X(v, t + s) ∀s ≥ 0

}= 1.

Proof. We assume that u,v belong to (0,1) and u > v. By (R2), (R3) and Lemma A.4,

X(u, t) − X(v, t) = M(u, t) − M(v, t) + g(u) − g(v) −
∫ t

0

[
(prXs

ξ)(u) − (prXs
ξ)(v)
]
ds, t ≥ 0,

is a continuous positive supermartingale, since (prXs
ξ)(u)− (prXs

ξ)(v) ≥ 0, s ≥ 0. Thus, coalescing property (5) follows
from Proposition II.3.4 [43]. If u ∈ {0,1} or v ∈ {0,1}, then equality (5) can be easily obtained from the continuity of
the map u �→ X(u, ·) at 0 and 1. Indeed, let for instance u = 1 > v > 0. Then for an arbitrary sequence {un,n ≥ 1} from
(v,u) which increases to u one has that ξ(un) = ξ(v), by the monotonicity of ξ . Hence, almost surely X(un, s) = X(v, s)

for all s ≥ τv,un = inf{t : X(v, t) = X(un, t)} and n ≥ 1. Passing to the limit as n → ∞ and using the fact that τv,u ≥ τv,un

for all n ≥ 1, we get (5). This completes the proof of the lemma. �
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Corollary 2.2. If ξ(u) = ξ(v) and g(u) = g(v) for some u,v ∈ [0,1], then X(u, ·) = X(v, ·) a.s. Moreover, if g, ξ ∈ S↑,
then there exists a partition {πk, k ∈ [n]} of [0,1] and a system of continuous processes {xk(t), t ≥ 0, k ∈ [n]} such that
almost surely

X(u, t) =
n∑

k=1

xk(t)Iπk
(u), u ∈ [0,1], t ≥ 0.

Proof. The first part of the corollary immediately follows from Lemma 2.1. To prove the second part, we first note that
the functions ξ and g (from S↑) can be written as

ξ =
n∑

k=1

ςkIπk
and g =

n∑
k=1

ykIπk
,

for some partition {πk, k ∈ [n]} of [0,1], ςk ≤ ςk+1 and yk ≤ yk+1, k ∈ [n− 1]. Hence, taking xk(·) := X(uk, ·), for some
uk ∈ πk , the needed equality follows from the first part of the corollary and (R2). The corollary is proved. �

Remark 2.3. If g, ξ ∈ S↑, then the family of semimartingales X(u, ·), u ∈ [0,1], is described by a finite number of
processes xk(t), t ≥ 0, according to Corollary 2.2. In this case, we will talk about a finite number of particles whose
evolution is described by xk(t), t ≥ 0, k ∈ [n].

2.2. Estimation of the mass of internal particles

In this section, we will obtain some estimates for masses of particles in CFWD. The key idea will be to replace the event
{m(u, t) < r} that the mass of the particle labeled by u is less than r by the event that the particles with labels u − r , u

and u + r belong to distinct clusters at time t . Therefore, the estimates obtained here will be better if u is close to the
middle of the interval. The case where u is close to the ends of the interval will be considered in the next section.

We introduce the following function

G(r1, r2, u, t) := 2
(
g(u + r2) − g(u)

)(
g(u) − g(u − r1)

)
+ 2
(
ξ(u) − ξ(u − r1)

)[
t
(
g(u + r2) − g(u)

)+ t2

2

(
ξ(u + r2) − ξ(u)

)]
+ 2
(
ξ(u + r2) − ξ(u)

)[
t
(
g(u) − g(u − r1)

)+ t2

2

(
ξ(u) − ξ(u − r1)

)]
.

(6)

Lemma 2.4. For each u ∈ (0,1), 0 < r < u ∧ (1 − u) and t ≥ 0 the inequality∫ t

0
P
{
m(u, s) < r

}
ds ≤ rG(r, r, u, t)

holds.

Proof. We fix u, r as in the assumption of the lemma and denote

Z+(t) := X(u + r, t) − X(u, t), Z−(t) := X(u, t) − X(u − r, t)

for all t ≥ 0.
Then Z+ and Z− can be written as follows

Z+(t) = z+ + N+(t) +
∫ t

0
b+(s) ds,

Z−(t) = z− + N−(t) +
∫ t

0
b−(s) ds,
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for all t ≥ 0, where

z+ := g(u + r) − g(u),

z− := g(u) − g(u − r),

b+(t) := ξ(u + r) − ξ(u) − [(prXt
ξ)(u + r) − (prXt

ξ)(u)
]
,

b−(t) := ξ(u) − ξ(u − r) − [(prXt
ξ)(u) − (prXt

ξ)(u − r)
]

and the square-integrable martingales N+, N− are defined as Z+ and Z− with X replaced by M .
Since the projection of a non-decreasing function is also non-decreasing (see Lemma A.4), we have that

(7) b+(t) ≤ ξ(u + r) − ξ(u) and b−(t) ≤ ξ(u) − ξ(u − r)

for all t ≥ 0.
Next, using (R4), we evaluate the joint quadratic variation of N+ and N−. For t ≥ 0 we have

[N+,N−]t = [M(u + r, ·) − M(u, ·),M(u, ·) − M(u − r, ·)]
t

=
∫ t

0

[
I{Z+(s)=0}
m(u, s)

+ I{Z−(s)=0}
m(u, s)

− 1

m(u, s)
− I{X(u+r,s)=X(u−r,s)}

m(u, s)

]
ds

= −
∫ t

0

I{Z+(s)>0,Z−(s)>0}
m(u, s)

ds.

Thus, Itô’s formula implies

Z+(t)Z−(t) = z+z− +
∫ t

0
Z+(s) dN−(s) +

∫ t

0
Z−(s) dN+(s)

+
∫ t

0
Z+(s)b−(s) ds +

∫ t

0
Z−(s)b+(s) ds −

∫ t

0

I{Z+(s)>0,Z−(s)>0}
m(u, s)

ds.

Note that the stochastic integrals in the expression above are martingales. This directly follows from the fact that
Z+,Z−,N+ and N− are square-integrable martingales, the Burkholder–Davis–Gundy inequality (see, e.g., Theo-
rem 26.12 [25]) and the inequality

E

√∫ t

0
Z2±(s) d[N∓]s ≤ E

√
Z∗±(t)[N∓]t ≤

√
EZ∗±(t)

√
E[N∓]t < ∞,

where Z∗±(t) := sups∈[0,t] Z2±(s). Taking the expectation, we obtain

EZ+(t)Z−(t) +E

∫ t

0

I{Z+(s)>0,Z−(s)>0}
m(u, s)

ds

= z+z− +E

∫ t

0
Z+(s)b−(s) ds +E

∫ t

0
Z−(s)b+(s) ds.

(8)

Next, we estimate the right hand side of the obtained equality, using estimates (7). We get

E

∫ t

0
Z+(s)b−(s) ds ≤ (ξ(u) − ξ(u − r)

) ∫ t

0
EZ+(s) ds

= (ξ(u) − ξ(u − r)
) ∫ t

0

[
z+ +E

∫ s

0
b+(s1) ds1

]
ds

≤ (ξ(u) − ξ(u − r)
)[

z+t + t2

2

(
ξ(u + r) − ξ(u)

)]
.
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Similarly,

E

∫ t

0
Z−(s)b+(s) ds ≤ (ξ(u + r) − ξ(u)

)[
z−t + t2

2

(
ξ(u) − ξ(u − r)

)]
.

We also remark that
1

m(u, t)
I{Z+(t)>0,Z−(t)>0} ≥ 1

2r
I{Z+(t)>0,Z−(t)>0},

by the definition of m(u, t). Consequently, we obtain

1

2r
E

∫ t

0
I{Z+(s)>0,Z−(s)>0} ds ≤ E

∫ t

0

I{Z+(s)>0,Z−(s)>0}
m(u, s)

ds ≤ 1

2
G(r, r, u, t),

due to (8) and the fact that Z+(t)Z−(t) ≥ 0. Thus,∫ t

0
P
{
m(u, s) < r

}
ds ≤
∫ t

0
P
{
Z+(s) > 0,Z−(s) > 0

}
ds = E

∫ t

0
I{Z+(s)>0,Z−(s)>0} ds ≤ rG(r, r, u, t).

The lemma is proved. �

Corollary 2.5. For each β > 0, u ∈ (0,1) and t > 0 the following estimate is true

E

∫ t

0

1

mβ(u, s)
ds ≤ t

(u ∧ (1 − u))β
+ β

∫ u∧(1−u)

0

1

rβ
G(r, r, u, t) dr,

where G is defined by (6).

Proof. By Lemma 3.4 [25] and Lemma 2.4, we have

E

∫ t

0

1

mβ(u, s)
ds =
∫ t

0
E

1

mβ(u, s)
ds

= β

∫ t

0

(∫ ∞

0
rβ−1P

{
1

m(u, s)
> r

}
dr

)
ds

= β

∫ t

0

(∫ ∞

0
rβ−1P

{
m(u, s) <

1

r

}
dr

)
ds

≤ β

∫ 1
u∧(1−u)

0

(∫ t

0
rβ−1 ds

)
dr + β

∫ ∞
1

u∧(1−u)

rβ−1
(∫ t

0
P

{
m(u, s) <

1

r

}
ds

)
dr

≤ t

(u ∧ (1 − u))β
+ β

∫ ∞
1

u∧(1−u)

rβ−1 1

r
G

(
1

r
,

1

r
, u, t

)
dr

= t

(u ∧ (1 − u))β
+ β

∫ u∧(1−u)

0

1

rβ
G(r, r, u, t) dr.

The lemma is proved. �

We will finish this section with the statement that is needed for the tightness argument in Section 3 and follows from
equality (8) obtained in the proof of Lemma 2.4.

Lemma 2.6. For each T > 0, u ∈ (0,1), r1 ∈ (0, u), r2 ∈ (0,1 − u) and λ > 0

P
{∥∥X(u + r2, ·) − X(u, ·)∥∥

C[0,T ] > λ,
∥∥X(u, ·) − X(u − r1, ·)

∥∥
C[0,T ] > λ

}≤ 1

2λ2
G(r1, r2, u,T ).

Proof. Let Z+ and b+ be defined as in the proof of Lemma 2.4 with r replaced by r2, and Z− and b− with r replaced by
r1. Let

σ± := inf
{
t : Z±(t) ≥ λ

}∧ T
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and

Zσ±
± (t) := Z±

(
σ± ∧ t

)
, t ∈ [0, T ].

Then, by Theorem 17.5 [25], Proposition 17.15 ibid. and (8), for each t ≥ 0

EZσ+
+ (t)Zσ−

− (t) +E

∫ t∧σ+∧σ−

0

I{Z+(s)>0,Z−(s)>0}
m(u, s)

ds

= z+z− +E

∫ t∧σ−

0
Zσ+

+ (s)b−(s) ds +E

∫ t∧σ+

0
Zσ−

− (s)b+(s) ds.

Similarly to the proof of Lemma 2.4, we get

EZσ+
+ (T )Zσ−

− (T ) ≤ 1

2
G(r1, r2, u,T ).

Next, we note that Zσ+
+ (T )Zσ−

− (T ) ≥ λ2I{σ+∨σ−<T }. Therefore,

P
{∥∥X(u + r2, ·) − X(u, ·)∥∥

C[0,T ] > λ,
∥∥X(u, ·) − X(u − r1, ·)

∥∥
C[0,T ] > λ

}
≤ P
{
σ+ ∨ σ− < T

}≤ 1

λ2
EZσ+

+ (T )Zσ−
− (T ) ≤ 1

2λ2
G(r1, r2, u,T ).

The lemma is proved. �

2.3. Estimation of the mass of external particles

In this section, we will estimate particle masses whose labels are close to the ends of the interval [0,1]. The obtained
inequalities will be weaker than ones from the previous section.

Lemma 2.7. For each α ∈ (0,1) and t ≥ 0 there exists a constant C = C(α, t) such that for all r ∈ (0,1) and u ∈ [0, r)

satisfying r + u ≤ 1 we have ∫ t

0
P
{
m(u, s) < r

}
ds ≤ CeC(ξ(1)−ξ(0))2

(
√

u + r)αGα
0 (r, u, t),

where

(9) G0(r, u, t) = (ξ(u + r) − ξ(u)
)
t + g(u + r) − g(u).

Proof. Let r ∈ (0,1) and u ∈ [0, r) be fixed. We set

Z(t) := X(u + r, t) − X(u, t), t ≥ 0,

and note that m(u, t) < r implies Z(t) > 0. In order to prove the lemma, we need to estimate the expectation
E
∫ t

0 I{Z(s)>0} ds.
Let us rewrite Z as follows

(10) Z(t) = z0 + N(t) +
∫ t

0
b(s) ds, t ≥ 0,

where

z0 : = g(u + r) − g(r), b(t) := ξ(u + r) − ξ(u) − [(prXt
ξ)(u + r) − (prXt

ξ)(u)
]

and N is a continuous local (Ft )-martingale with quadratic variation

[N ]t = [M(u + r, ·)]
t
+ [M(u, ·)]

t
− 2
[
M(u + r, ·),M(u, ·)]

t

=
∫ t

0

(
1

m(u + r, s)
+ 1

m(u, s)
− 2I{Z(s)=0}

m(u, s)

)
ds, t ≥ 0.
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We note that Z(t) > 0 implies m(u, t) = Leb{v : X(u, t) = X(v, t)} < u + r . Thus,

(11) [N ]t =
∫ t

0
a(s)2I{Z(s)>0} ds, t ≥ 0,

where a(t) := ( 1
m(u+r,t)

+ 1
m(u,t)

)
1
2 ∨ 1√

r+u
≥ 1√

r+u
for any t ≥ 0.

Next, we are going to use the Girsanov theorem in order to remove
∫ t

0 b(s)I{Z(s)>0} ds from the drift
∫ t

0 b(s) ds in
(10). Since the processes Z, a, N , b are functionals of X(·, t), t ≥ 0, which can be considered as a random element of
C([0,∞),D↑), without loss of generality, we may assume that � = C([0,∞),D↑), P = Law{X}, X(u, t,ω) = ω(u, t),
t ≥ 0, u ∈ [0,1], F is the completion of the Borel σ -field in C([0,∞),D↑) and (Ft )t≥0 is the right-continuous and
complete induced filtration. By Theorem 2.7.1’ [22] and (11), there exists a Brownian motion w(t), t ≥ 0, on an extended
probability space (�̂, F̂, P̂) with respect to an extended filtration (F̂t )t≥0 such that

N(t) =
∫ t

0
a(s)I{Z(s)>0} dw(s), t ≥ 0.

Moreover, we can take �̂ = C([0,∞),D↑ × R) and (F̂t )t≥0 to be the right-continuous and complete induced filtration
on �̂. Let

Ut := −
∫ t

0

b(s)

a(s)
dw(s), t ≥ 0,

and

B(t) := w(t) − [w,U ]t = w(t) +
∫ t

0

b(s)

a(s)
ds, t ≥ 0.

Then, by Novikov’s theorem and Lemma 18.18 [25], there exists a probability measure Q on �̂ such that

dQ = exp

{
Ut − 1

2

∫ t

0

b(s)2

a(s)2
ds

}
dP̂ on F̂t

for all t ≥ 0. Using the Girsanov theorem, we have that B(t), t ≥ 0, is a Brownian motion on the probability space
(�̂, F̂,Q) and

Z(t) = z0 +
∫ t

0
a(s)I{Z(s)>0} dw(s) +

∫ t

0
b(s) ds

= z0 +
∫ t

0
a(s)I{Z(s)>0} dB(s) +

∫ t

0
b(s)I{Z(s)=0} ds

= z0 +
∫ t

0
a(s)I{Z(s)>0} dB(s) + (ξ(u + r) − ξ(u)

) ∫ t

0
I{Z(s)=0} ds.

Next, we will consider the process Z on the probability space (�̂, F̂,Q) and estimate EQ
∫ t

0 I{Z(s)>0} ds, where the
expectation EQ is taken with respect to the measure Q. Set

Y(t) := √
u + rZ(t), t ≥ 0.

It is easily seen that

Y(t) = y0 +
∫ t

0
ρ(s)I{Y(s)>0} dB(s) + ξ0

∫ t

0
I{Y(s)=0} ds, t ≥ 0,

where y0 := √
u + rz0 = √

u + r(g(u + r) − g(u)), ρ(t) := √
u + ra(t) ≥ 1, t ≥ 0, and ξ0 := √

u + r(ξ(u + r) − ξ(u)).
Using the inequality

ρ(t) = √
u + ra(t) ≥ 1

for all t ≥ 0, and Proposition A.1, we get for every t ≥ 0

EQRt ≤
√

2t

π
(ξ0t + y0),
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where

Rt :=
∫ t

0
I{Y(s)>0} ds =

∫ t

0
I{Z(s)>0} ds, t ≥ 0.

Now, we can estimate ERt = E
∫ t

0 I{Z(s)>0} ds. Since Rt , t ≥ 0, is an (F̂t )-measurable, for each p,q > 1 satisfying
1
p

+ 1
q

= 1 we have

ERt = EQ exp

{
−Ut + 1

2

∫ t

0

b(s)2

a(s)2
ds

}
Rt ≤
(
EQ exp

{
−pUt + p

2

∫ t

0

b(s)2

a(s)2
ds

}) 1
p (
EQR

q
t

) 1
q

≤
(
E exp

{
(1 − p)Ut − 1 − p

2

∫ t

0

b(s)2

a(s)2
ds

}) 1
p

t
q−1
q
(
EQRt

) 1
q

for all t ≥ 0. In the inequality above, we have applied Jensen’s inequality to R
q
t = (
∫ t

0 I{Z(s)>0} ds)q . Since b(t)2

a(t)2 ≤
(ξ(1) − ξ(0))2(u + r) ≤ (ξ(1) − ξ(0))2 for all t ≥ 0 and

exp

{
(1 − p)Ut − (1 − p)2

2

∫ t

0

b(s)2

a(s)2
ds

}
, t ≥ 0,

is a positive martingale with expectation 1, we have

E exp

{
(1 − p)Ut − 1 − p

2

∫ t

0

b(s)2

a(s)2
ds

}
≤ e

tp(p−1)
2 (ξ(1)−ξ(0))2

E exp

{
(1 − p)Ut − (1 − p)2

2

∫ t

0

b(s)2

a(s)2
ds

}
= e

tp(p−1)
2 (ξ(1)−ξ(0))2

.

Thus,

ERt ≤ t
q−1
q e

t(p−1)
2 (ξ(1)−ξ(0))2

(√
2t

π
(ξ0t + y0)

) 1
q

.

Taking q = 1
α

, we obtain for every t ≥ 0∫ t

0
P
{
m(u, s) < r

}≤ ERt ≤ CeC(ξ(1)−ξ(0))2
(
√

u + r)αGα
0 (r, u, t),

with some constant C depending on t and α. The lemma is proved. �

Applying Lemma 2.7 to the process {−X(1 − u, t), u ∈ [0,1], t ≥ 0}, we obtain a similar result for u near 1.

Lemma 2.8. For each α ∈ (0,1) and t ≥ 0 there exists a constant C = C(α, t) such that for all r ∈ (0,1) and u ∈ (1−r,1]
satisfying u − r ≥ 0 we have∫ t

0
P
{
m(u, s) < r

}
ds ≤ CeC(ξ(1)−ξ(0))2

(
√

1 − u + r)αGα
1 (r, u, t),

where

(12) G1(r, u, t) := (ξ(u) − ξ(u − r)
)
t + g(u) − g(u − r).

Corollary 2.9. For every α ∈ (0,1), β > 0, u ∈ {0,1} and t > 0 the estimate

E

∫ t

0

1

mβ(u, s)
ds ≤ t + βCeC(ξ(1)−ξ(0))2

∫ 1

0

1

rβ+1− α
2
Gu(r,u, t) dr,

holds, where G0 and G1 are defined in lemmas 2.7 and 2.8 and C = C(α, t) is the same constant as in Lemma 2.7.
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Proof. Using lemmas 2.7 and 2.8, the corollary can be proved in the same way as Corollary 2.5. �

2.4. Lp-norm of CFWD

The aim of this section is to combine estimates from previous two sections in order to get a bound of E sups∈[0,t] ‖X(·,
s)‖2+δ

L2+δ
for some δ > 0. We will start from the following proposition.

Proposition 2.10. For each p > 2 and 0 < β < 3
2 − 1

p
there exists a constant C = C(p,β, t) such that

E

∫ 1

0

∫ t

0

duds

mβ(u, s)
≤ CeC(ξ(1)−ξ(0))2(

1 + ‖g‖3
Lp

+ ‖ξ‖Lp

)
.

Proof. By Lemma 3.4 [25], we have

E

∫ 1

0

∫ t

0

duds

mβ(u, s)
= β

∫ 1

0

∫ t

0

∫ ∞

0
rβ−1P

{
1

m(u, s)
> r

}
duds dr

= β

∫ 2

0
rβ−1
(∫ 1

0

∫ t

0
P

{
m(u, s) <

1

r

}
duds

)
dr

+ β

∫ ∞

2
rβ−1
(∫ 1

r

0

∫ t

0
P

{
m(u, s) <

1

r

}
duds

)
dr

+ β

∫ ∞

2
rβ−1
(∫ 1− 1

r

1
r

∫ t

0
P

{
m(u, s) <

1

r

}
duds

)
dr

+ β

∫ ∞

2
rβ−1
(∫ 1

1− 1
r

∫ t

0
P

{
m(u, s) <

1

r

}
duds

)
dr =: I1 + I2 + I3 + I4.

The first integral I1 ≤ 2βt , since trivially P{m(u, s) < 1
r
} ≤ 1.

Next, using Lemma 2.7, we estimate I2. Let α ∈ (0 ∨ (2β − 2),1) be fixed and satisfy 1 + α
2 − α

p
> β . Then for each

r ′ := 1
r

≤ 1
2∫ r ′

0

∫ t

0
P
{
m(u, s) < r ′}duds ≤ C1

∫ r ′

0

(√
u + r ′)α[(ξ(u + r ′)− ξ(u)

)
t + g
(
u + r ′)− g(u)

]α
du

≤ C1t
α

∫ r ′

0

(√
u + r ′)α(ξ(u + r ′)− ξ(u)

)α
du

+ C1

∫ r ′

0

(√
u + r ′)α(g(u + r ′)− g(u)

)α
du,

where C1 = C1(α, t) := C(α, t)eC(α,t)(ξ(1)−ξ(0))2
. We can easily estimate the first term as follows

C1t
α

∫ r ′

0

(√
u + r ′)α(ξ(u + r ′)− ξ(u)

)α
du ≤ 2

α
2 C1t

α
(
r ′)1+ α

2
(
ξ(1) − ξ(0)

)α
,

using ξ(u + r ′) − ξ(u) ≤ ξ(1) − ξ(0) and u + r ′ ≤ 2r ′. The second term will be estimated using Hölder’s inequality. For
q satisfying 1

p
+ 1

q
= 1 we have

C1

∫ r ′

0

(√
u + r ′)α(g(u + r ′)− g(u)

)α
du

≤ C1
(
2r ′) α2 ∫ r ′

0

(
g
(
u + r ′)− g(u)

)α
du

≤ C1
(
2r ′) α2 (r ′)1−α

[∫ r ′

0

(
g
(
u + r ′)− g(u)

)
du

]α
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≤ 2
α
2 C1
(
r ′)1− α

2

[∫ 1

0

(
I[r ′,2r ′](u) − I[0,r ′](u)

)
g(u)du

]α
≤ 2

α
2 C1
(
r ′)1− α

2 ‖g‖α
Lp

[∫ 1

0

∣∣I[r ′,2r ′](u) − I[0,r ′](u)
∣∣q du

] α
q

= 2
α
2 C1
(
r ′)1− α

2 ‖g‖α
Lp

(
2r ′) αq = 2

α
2 + α

q C1
(
r ′)1+ α

q
− α

2 ‖g‖α
Lp

.

Thus,

I2 ≤ 2
α
2 C1t

α
(
ξ(1) − ξ(0)

)α ∫ ∞

2
rβ−1−1− α

2 dr + 2
α
2 + α

q C1‖g‖α
Lp

∫ ∞

2
r
β−1−1− α

q
+ α

2 dr,

where
∫∞

2 rβ−1−1− α
2 dr and

∫∞
2 r

β−1−1− α
q
+ α

2 dr are finite because β − 2 − α
2 < −1 and β − 2 − α

q
+ α

2 < −1, by the

choice of α.

Similarly, we obtain the same estimate for I4, by Lemma 2.8.

In order to estimate I3, we use Lemma 2.4. For r ′ = 1
r

≤ 1
2 we get

∫ 1−r ′

r ′

∫ t

0
P
{
m(u, s) < r ′}duds ≤

∫ 1−r ′

r ′
r ′G
(
r ′, u, t

)
du

= 2r ′
∫ 1−r ′

r ′

(
g
(
u + r ′)− g(u)

)(
g(u) − g

(
u − r ′))du

+ 2 tr′
∫ 1−r ′

r ′

(
ξ(u) − ξ

(
u − r ′))(g(u + r ′)− g(u)

)
du

+ 2t2r ′
∫ 1−r ′

r ′

(
ξ(u) − ξ

(
u − r ′))(ξ(u + r ′)− ξ(u)

)
du

+ 2 tr′
∫ 1−r ′

r ′

(
ξ
(
u + r ′)− ξ(u)

)(
g(u) − g

(
u − r ′))du

=: J1 + J2 + J3 + J4,

where G is defined by (6). First, we estimate J1. Using the trivial inequality x2 ≤ x + x2I{x>1}, x ≥ 0, and Hölder’s
inequality with 1

l
+ 1

l′ = 1 and l = p
2 , we obtain

J1 ≤ 2r ′
∫ 1−r ′

r ′

(
g
(
u + r ′)− g

(
u − r ′))2 du ≤ 2r ′

∫ 1−r ′

r ′

(
g
(
u + r ′)− g

(
u − r ′))du

+ 2r ′
∫ 1−r ′

r ′

(
g
(
u + r ′)− g

(
u − r ′))2I{g(u+r ′)−g(u−r ′)>1} du

≤ 2r ′
∫ 1−r ′

r ′

(
g
(
u + r ′)− g

(
u − r ′))du

+ 2r ′
[∫ 1−r ′

r ′

(
g
(
u + r ′)− g

(
u − r ′))p du

] 2
p
[∫ 1−r ′

r ′
I{g(u+r ′)−g(u−r ′)>1} du

] 1
l′

≤ 2r ′
∫ 1−r ′

r ′

(
g
(
u + r ′)− g

(
u − r ′))du + 8r ′‖g‖2

Lp

[∫ 1−r ′

r ′

(
g
(
u + r ′)− g

(
u − r ′))du

]1− 2
p

.
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Since ∫ 1−r ′

r ′

(
g
(
u + r ′)− g

(
u − r ′))du =

∫ 1

0
(I[2r ′,1] − I[0,1−2r ′])g(u)du

≤ ‖g‖Lp

[∫ 1

0
|I[2r ′,1] − I[0,1−2r ′]|du

]1− 1
p

= ‖g‖Lp

(
4r ′)1− 1

p ,

(13)

J1 can be estimated as follows

J1 ≤ c1‖g‖Lp

(
r ′)2− 1

p + c2‖g‖3− 2
p

Lp

(
r ′)2+ 2

p2 − 3
p ,

where c1, c2 are constants. Using (13), we have

J2 + J3 + J4 ≤ c3t
(
r ′)2− 1

p
(
ξ(1) − ξ(0)

)‖g‖Lp

+ 2t2r ′(ξ(1) − ξ(0)
) ∫ 1−r ′

r ′

(
ξ
(
u + r ′)− ξ

(
u − r ′))du

≤ c3t
(
r ′)2− 1

p
(
ξ(1) − ξ(0)

)‖g‖Lp + c4t
2(r ′)2− 1

p
(
ξ(1) − ξ(0)

)‖ξ‖Lp .

Thus,

I3 ≤ βC2
(
ξ(1) − ξ(0)

)‖g‖Lp

∫ ∞

2
r
β−1−2+ 1

p dr + C3
(
ξ(1) − ξ(0)

)‖g‖3− 2
p

Lp

∫ ∞

2
r
β−1−2− 2

p2 + 3
p dr

+ C4
(
ξ(1) − ξ(0)

)‖ξ‖Lp

∫ ∞

2
r
β−1−2+ 1

p dr,

where constants Ci , i ∈ {2,3,4}, only depend on p and t and the integrals are finite according to the choice of β . The
lemma is proved. �

Since we will consider X(·, t), t ≥ 0, as a continuous process with values in L2+δ , for convenience of notation we will
denote Xt := X(·, t), t ≥ 0.

Lemma 2.11. For each t > 0, δ ∈ [0,1) and ε > 2δ
1−δ

there exists a constant C = C(t, δ, ε) such that

E sup
s∈[0,t]

‖Xs − g‖2+δ
L2+δ

≤ CeC(ξ(1)−ξ(0))2(
1 + ‖g‖3

L2+ε
+ ‖ξ‖L2+ε

)
.

Proof. By the Burkholder–Davis–Gundy inequality, (R3), (R4) and Proposition 2.10, we have

E sup
s∈[0,t]

‖Xs − g‖2+δ
L2+δ

= E sup
s∈[0,t]

∫ 1

0

∣∣X(u, s) − g(u)
∣∣2+δ

du

≤
∫ 1

0
E sup

s∈[0,t]

∣∣X(u, s) − g(u)
∣∣2+δ

du ≤ 21+δ

∫ 1

0
E sup

s∈[0,t]

∣∣M(u, s)
∣∣2+δ

du

+ 21+δ

∫ 1

0
E sup

s∈[0,t]

∣∣∣∣∫ s

0

(
ξ(u) − (prXr

ξ)(u)
)
dr

∣∣∣∣2+δ

du

≤ 21+δC1

∫ 1

0
E

(∫ t

0

ds

m(u, s)

)1+ δ
2

du + 21+δt2+δ
(
ξ(1) − ξ(0)

)2+δ

≤ 21+δC1t
δ
2

∫ 1

0

(
E

∫ t

0

ds

m(u, s)1+ δ
2

)
du + 21+δt2+δ

(
ξ(1) − ξ(0)

)2+δ

≤ 21+δC1t
δ
2 CeC(ξ(1)−ξ(0))2(

1 + ‖g‖3
L2+ε

+ ‖ξ‖L2+ε

)+ 21+δt2+δ
(
ξ(1) − ξ(0)

)2+δ
,
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where C1 depends on δ. We could apply Proposition 2.10 in the last step of the estimate above, since 1 + δ
2 < 3

2 − 1
2+ε

.
The lemma is proved. �

Corollary 2.12. Under the assumptions of Lemma 2.11,

E sup
s∈[0,t]

‖Xs‖2+δ
L2+δ

≤ CeC(ξ(1)−ξ(0))2(
1 + ‖g‖2+δ

L2+δ
+ ‖g‖3

L2+ε
+ ‖ξ‖L2+ε

)
,

where C depends on t, δ and ε.

3. Tightness results

As was discussed in the introduction, we will build a CFWD as a limit of finite sticky-reflected particle systems, where
the existence of the limit will be based on the tightness argument. In this section, we will obtain a sufficient condi-
tions for the tightness of a family of CFWDs. Let {ξn, n ≥ 1} and {gn,n ≥ 1} be arbitrary sequences in D↑ and let
{Xn,n ≥ 1} be a sequence of random elements in D([0,1],C[0,∞)) satisfying (R1)–(R4) with ξn, gn instead of ξ ,
g, and E‖Xn(·, t)‖2

L2
< ∞ for all t ≥ 0 and n ≥ 1. As in the previous section, we assume that such random elements

{Xn,n ≥ 1} exist. Let Mn(u, ·) and An(u, ·) denote the martingale part and the part of bounded variation of Xn(u, ·) for
every u ∈ [0,1], that is,

An(u, t) =
∫ t

0

(
ξn(u) − (prXn

s
ξn)(u)

)
ds

and

Mn(u, t) = Xn(u, t) − gn(u) − An(u, t),

for all t ≥ 0, where Xn
t := Xn(·, t), t ≥ 0.

3.1. Tightness of weak solutions

In this section, we check the tightness of the family {Xn· , n ≥ 1}, where we consider Xn as random processes in L
↑
2 . Let

Mn
t := Mn(·, t) and An

t := An(·, t), t ≥ 0, n ≥ 1.

We will also consider Mn· , n ≥ 1, and An· , n ≥ 1, as stochastic processes taking values in L2. Using (R1)–(R4) and
Remark 1.8, one can show that the processes Xn

t , t ≥ 0, are weak solutions to SDE (3) with g and ξ replaced by gn and
ξn.

In the next section, we will show that each limit point of {Xn· , n ≥ 1} (which will exist by the tightness and Prokhorov’s
theorem) is a weak solution to SDE (3). For this, we will need the convergence of the martingale parts, the parts of bounded
variation and the quadratic variation processes. Let {ei, i ∈ N} be a fixed orthonormal basis of L2 and Mn(ei) := (Mn· , ei),
i ∈N. We are going to prove that the family

(14) X
n := (Mn,An,

([
Mn(ei),M

n(ej )
])

(i,j)∈N2,
〈
Mn
〉)
, n ≥ 1,

is tight in

W := C
([0,∞),L2

)× C
([0,∞),L2

)× C[0,∞)N
2 × C[0,∞)

under the assumptions that {gn, ξnn ≥ 1} is bounded in L2+δ for some δ > 0 and {ξn(1) − ξn(0), n ≥ 1} is bounded in R.
In order to prove the tightness, we need the following lemma.

Lemma 3.1. For every C > 0 and δ > 0 the set KC := {g :∈ L
↑
2 : ‖g‖L2+δ

≤ C} is compact in L
↑
2 and, consequently, in

L2.

For the proof of the lemma see, e.g., Lemma 5.1 [29].

Proposition 3.2. If there exists δ > 0 such that {gn, ξn, n ≥ 1} ⊂ D↑ is bounded in L2+δ and {ξn(1) − ξn(0), n ≥ 1} is
bounded in R, then {Xn

,n ≥ 1} is tight in W .
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Proof. In order to prove the proposition, it is enough to show that the coordinate processes of {Xn
,n ≥ 1} are tight in the

corresponding spaces, by Proposition 3.2.4 [16]. We first prove that {An,n ≥ 1} is tight in C([0,∞),L2). We remark that
An

t = tξn − ∫ t

0 prXn
s
ξn ds and the sequence {tξn, t ≥ 0}n≥1 is relatively compact in C([0,∞),L2), by Lemma 3.1. Thus,

to prove the tightness of {An,n ≥ 1}, it is enough to show that {Ân· := ∫ ·
0 prXn

s
ξn ds, n ≥ 1} is tight in C([0,∞),L2). Note

that prXn
t
ξn belongs to L

↑
2 for each t ≥ 0, according to Lemma A.4. Therefore, the process Ân takes values in L

↑
2 for all

n ≥ 1. To prove the tightness, we will use Jakubowski’s tightness criterion [24, Theorem 3.1] (see also Theorem 3.6.4
[7]), which claims that a family of continuous stochastic processes Zn

t , t ≥ 0, taking values in a Polish space E, is tight
in C([0,∞),E)8 if and only if the following two conditions are satisfied:

(i) for each T > 0 and ε > 0 there exists a compact KT,ε ⊂ E such that

P
{
Zn

t ∈ KT,ε, t ∈ [0, T ]}> 1 − ε,

for every n ≥ 1;
(ii) for a family F of real-valued continuous functions on E that separates points in E and is closed under addition, one

has that {f (Zn· ), n ≥ 1} is tight in C[0,∞) for every f ∈ F .

Using Lemma 3.1 and the estimate

E sup
s∈[0,t]

∥∥∥∥∫ s

0
prXn

r
ξn dr

∥∥∥∥2+δ

L2+δ

= E sup
s∈[0,t]

∫ 1

0

∣∣∣∣∫ s

0
(prXn

r
ξn)(u) dr

∣∣∣∣2+δ

du

≤ t1+δE

∫ t

0

(∫ 1

0
|prXn

r
ξn|2+δ(u) du

)
dr

≤ t1+δE

∫ t

0

(∫ 1

0

(
prXn

r
|ξn| 2+δ

2
)2

(u) du

)
dr

= t1+δE

∫ t

0

∥∥prXn
r
|ξn| 2+δ

2
∥∥2

L2
dr ≤ t2+δ‖ξn‖2+δ

L2+δ
,

where the inequality |prXn
r
ξn| 2+δ

2 ≤ prXn
r
|ξn| 2+δ

2 follows from Remark A.2(ii) and Hölder’s inequality for conditional
expectations, we can conclude that for each ε > 0 and T > 0 there exists C > 0 such that

P
{∃t ∈ [0, T ], Ân

t /∈ KC

}
< ε

for all n ≥ 1, where KC = {g ∈ L
↑
2 : ‖g‖L2+δ

≤ C} is compact in L2. Consequently, the family of processes {Ân, n ≥ 1}
satisfies property (i) of Jakubowski’s tightness criterion. In order to check property (ii), we choose F to be the set of all
linear functionals g �→ (g,h)L2 , h ∈ L2, on L2. It trivially separates points on L2 and is closed under addition. Thus, we
only need to check the tightness of {(Ân· , h)L2 , n ≥ 1} in C[0,∞). We will apply the Aldous tightness criterion (see, e.g.,
Theorem 16.11 [25]). Let T > 0, {rn, n ≥ 1} ⊂ [0, T ] be any sequence decreasing to 0 and {τn, n ≥ 1} be any sequence of
(FXn

t )-stopping times on [0, T ]. Using Chebyshev’s inequality and then the Cauchy–Schwarz inequality, we obtain for
every ε > 0

P
{∣∣(Ân

τn+rn
, h
)
L2

− (Ân
τn

, h
)
L2

∣∣> ε
}≤ 1

ε2
E
((

Ân
τn+rn

, h
)
L2

− (Ân
τn

, h
)
L2

)2
= 1

ε2
E

(∫ τn+rn

τn

(prXn
s
ξn, h)L2 ds

)2

≤ rn

ε2
E

∫ τn+rn

τn

(prXn
s
ξn, h)2

L2
ds

≤ r2
n

ε2
‖ξn‖2

L2
‖h‖2

L2
→ 0, rn → 0.

This implies the tightness of {Ân, n ≥ 1} in C([0,∞),L2).

8Originally Jakubowski’s tightness criterion is formulated for the Skorohod space D([0,∞),E). However, the statement remains true for the space
C([0,∞),E) as a closed subspace of D([0,∞),E).
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Similarly, we can prove that {Xn,n ≥ 1} is tight in C([0,∞),L
↑
2 ), using Corollary 2.12, the equality Xn

t = gn +Mn
t +

tξn − Ân
t , t ≥ 0, and the estimate

P
{∣∣(Xn

τn+rn
, h
)
L2

− (Xn
τn

, h
)
L2

∣∣> ε
}≤ 1

ε2
E
((

Xn
τn+rn

, h
)
L2

− (Xn
τn

, h
)
L2

)2
≤ 3

ε2
E
((

Mn
τn+rn

, h
)
L2

− (Mn
τn

,h
)
L2

)2 + 3

ε2
E
(
rn(ξn,h)L2

)2
+ 3

ε2
E
((

Ân
τn+rn

, h
)
L2

− (Ân
τn

, h
)
L2

)2
≤ 3

ε2
E

∫ τn+rn

τn

‖prXn
s
h‖2

L2
ds + 6r2

n

ε2
‖ξn‖2

L2
‖h‖2

L2

≤ 3rn

ε2
‖h‖2

L2

(
1 + 2rn‖ξn‖2

L2

)
.

Hence, by Proposition 3.2.4 [16], {(Xn,An),n ≥ 1} is tight in C([0,∞),L2)
2 and, consequently, the sequence of pro-

cesses {Mn,n ≥ 1}, which are defined by Mn
t = Xn

t − gn − An
t , t ≥ 0, is tight in C([0,∞),L2).

For every i, j ∈N the tightness of the family of processes[
Mn(ei),M

n(ej )
]
t
=
∫ t

0
(prXn

s
ei, ej )L2 ds, t ≥ 0, n ≥ 1,

in C[0,∞) can be proved in the same way as the tightness of {(Ân· , h)L2 , n ≥ 1}.
Next, we prove the tightness of {〈Mn〉, n ≥ 1} in C[0,∞). We are going to use the Aldous tightness criterion again.

By Lemma A.6 and Proposition 2.10,

E
〈
Mn
〉
t
= E

∫ t

0
‖prXn

s
‖2

HS ds = E

∫ t

0

(∫ 1

0

du

mn(u, s)

)
ds ≤ CeC(ξn(1)−ξn(0))2(

1 + ‖gn‖3
L2+δ

+ ‖ξn‖L2+δ

)
,

where the constant C depends on t and δ. Thus, the boundedness of {gn, ξn, n ≥ 1} in L2+δ and {ξn(1)−ξn(0), n ≥ 1} in R

yields the tightness of {〈Mn〉t , n ≥ 1} in R for all t ≥ 0. Next, let T > 0, {rn, n ≥ 1} ⊂ [0, T ] be any sequence decreasing
to 0 and {τn, n ≥ 1} be any sequence of (FXn

t )-stopping times on [0, T ]. Then for each ε > 0 and β ∈ (1, 3
2 − 1

2+δ
)

P
{∣∣〈Mn
〉
τn+rn

− 〈Mn
〉
τn

∣∣> ε
}≤ 1

ε
E
(〈

Mn
〉
τn+rn

− 〈Mn
〉
τn

)= 1

ε
E

∫ τn+rn

τn

‖prXn
s
‖2

HS ds

[Lemma A.6] = 1

ε
E

∫ τn+rn

τn

(∫ 1

0

du

mn(u, s)

)
ds = 1

ε
E

∫ 1

0

∫ 2T

0

I[τn,τn+rn]
mn(u, s)

duds

[Hölder in.] ≤ 1

ε

(
E

∫ 1

0

∫ 2T

0
I[τn,τn+rn] duds

) β−1
β
(
E

∫ 1

0

∫ 2T

0

duds

m
β
n(u, s)

) 1
β

= r

β−1
β

n

ε

(
E

∫ 1

0

∫ 2T

0

duds

m
β
n(u, s)

) 1
β

.

Consequently, P{|〈Mn〉τn+rn − 〈Mn〉τn | > ε} → 0 as n → ∞, by Proposition 2.10. Thus, the Aldous tightness criterion
implies the compactness of {〈Mn〉, n ≥ 1} in C[0,∞). This completes the proof of the proposition. �

Corollary 3.3. Let δ > 0, {gn, ξn, n ≥ 1} ⊂ S↑ and {Xn
,n ≥ 1} be defined by (14). If gn → g, ξn → ξ in L2+δ and

{ξn(1) − ξn(0), n ≥ 1} is bounded, then there exists a subsequence N ⊆ N and a random element X in W such that
X

n → X in W in distribution along N .

Proof. The statement of the corollary follows from Prochorov’s theorem and Proposition 3.2. �

3.2. Tightness in the Skorohod space

In this section, we will consider the processes Mn, An, Xn, which were defined at the beginning of Section 3, as random
elements in the Skorohod space D([0,1],C[0,∞)). In order to prove the tightness of Xn, n ≥ 1, in D([0,1],C[0,∞)),
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we are going to apply the same approach as in the proof of Proposition 2.2 [28], based on estimates from Section 2 (see
corollaries 2.5, 2.9 and Lemma 2.6) which require a type of regularity of gn and ξn on the whole interval [0,1]. However,
restricting Xn(u, ·), u ∈ [0,1], to smaller intervals [a, b] ⊆ [0,1] and proving the tightness in D([a, b],C[0,∞)), the
piecewise regularity of gn and ξn will be enough. This will allow to get the existence of the CFWD as a random element
in the Skorohod space for every piecewise Hölder continuous initial condition g and interaction potential ξ in the next
section. Therefore, we will restrict Xn(u, ·), u ∈ [0,1], to an interval [a, b] ⊆ [0,1]. For π = [a, b] ⊆ [0,1] we set

Xπ,n(u, ·) =
⎧⎨⎩Xn(u, ·), u ∈ [a, b),

lim
u↑b

Xn(u, ·), u = b,

where limu↑b Xn(u, ·) exists in C[0,∞) due to the fact that the map u �→ Xn(u, ·) is càdlág. Let Gn be defined by (6)
with g and ξ replaced by gn and ξn, respectively, and let

Gn
a(r, t) := (ξn(a + r) − ξn(a)

)
t + gn(a + r) − gn(a), r ∈ (0,1 − a],

Gn
b(r, t) := (ξn(b−) − ξn(b − r)

)
t + gn(b−) − gn(b − r), r ∈ (0, b].

Proposition 3.4. Let T > 0, π := [a, b] ⊆ [0,1], and {gn, ξn, n ≥ 1} ⊂ D↑ be uniformly bounded, i.e.,

sup
n≥1

sup
u∈[0,1]
(∣∣gn(u)

∣∣∨ ∣∣ξn(u)
∣∣)< ∞.

If there exist β > 0 and C > 0 such that for each n ≥ 1

(c1) Gn(r ∧ (u − a), r ∧ (b − u),u,T ) ≤ Cr1+β for all u ∈ (a, b), r > 0;

(c2) Gn
v(r, T ) ≤ Cr

1
2 +β for all v ∈ {a, b} and r ∈ (0, b ∧ 1 − a],

then the family {Xπ,n(u, t), u ∈ [a, b], t ∈ [0, T ]}n≥1 is tight in D([a, b], C[0, T ]).

Remark 3.5. The assumption on the piecewise Hölder continuity of the initial condition g and the interaction potential
ξ in Theorem 1.1 is required for the construction of sequences {gn,n ≥ 1} and {ξn, n ≥ 1} which converge to g and
ξ , respectively, and satisfy the uniform regularity assumptions (c1), (c2) of Proposition 3.4 (see Section 4.2.1 for more
details).

Proof of Proposition 3.4. The proof is similar to the proof of Proposition 2.2 [35]. Here, we indicate the main steps only.
The statement will follow from theorems 3.8.6 and 3.8.8 [16] and Remark 3.8.9 ibid. We only have to check the

following properties of {Xπ,n, n ≥ 1}.
(a) There exists C1 > 0 such that

P
{∥∥Xπ,n

(
(u + r) ∧ b, ·)− Xπ,n(u, ·)∥∥

C[0,T ] > λ,
∥∥Xπ,n(u, ·) − Xπ,n

(
(u − r) ∨ a, ·)∥∥

C[0,T ] > λ
}≤ C1r

1+β

λ2

for all n ∈ N, u ∈ (a, b), r > 0 and λ > 0.
(b) For some α > 0

(15) lim
δ→0+ sup

n≥1
E
[∥∥Xπ,n(a + δ, ·) − Xπ,n(a, ·)∥∥α

C[0,T ] ∧ 1
]= 0

and

(16) lim
δ→0+ sup

n≥1
E
[∥∥Xπ,n(b, ·) − Xπ,n(b − δ, ·)∥∥α

C[0,T ] ∧ 1
]= 0.

(c) For all u ∈ [a, b] the sequence {Xπ,n(u, t), t ∈ [0, T ]}n≥1 is tight in C[0, T ].
Properties (a), (b) and (c) are needed for the verification of conditions (8.39), (8.30)9 of [16, Chapter 3] and (a) of

Theorem 3.7.2 ibid., respectively.

9Here, we used the statement for the tightness in D([a,∞),C[0, T ]), which can be applied to {Xπ,n(u ∧ b, t), u ∈ [0,∞), t ∈ [0, T ]}n≥1. Since
D([a, b],C[0, T ]) contains functions which are continuous in b, additional property (16) is needed for the tightness there.
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Property (a) immediately follows from (c1) and Lemma 2.6.
Next, let us prove (b). We will check (16) for every α > 1. The proof of (15) is similar. Using the monotonicity of

Xπ,n(u, ·), u ∈ [a, b], and the monotone convergence theorem, we have for each δ ∈ (0, b − a)

E
[∥∥Xπ,n(b, ·) − Xπ,n(b − δ, ·)∥∥α

C[0,T ] ∧ 1
]

= sup
γ∈(0,δ)

E
[∥∥Xπ,n(b − γ, ·) − Xπ,n(b − δ, ·)∥∥α

C[0,T ] ∧ 1
]

= sup
γ∈(0,δ)

E
[∥∥Xn(b − γ, ·) − Xn(b − δ, ·)∥∥α

C[0,T ] ∧ 1
]
.

(17)

In order to estimate the last expression, we are going to use Doob’s martingale inequality (see, e.g., Proposition 2.2.16
[16]) for submartingales. Since Xn(b − γ, t) − Xn(b − δ, t), t ≥ 0, is not a submartingale, we introduce a new process

Xn
δ,γ (t) := gn(b − γ ) − gn(b − δ) + Mn(b − γ, t) − Mn(b − δ, t) + An

δ,γ (t), t ∈ [0, T ],
where

An
δ,γ (t) : =

∫ t

0

(
bn
δ,γ (s) ∨ 0

)
ds

and

bn
δ,γ (s) := ξn(b − γ ) − ξn(b − δ) − [(prXn

s
ξn)(b − γ ) − (prXn

s
ξn)(b − δ)

]
,

and note that it is a continuous submartingale because An
δ,γ is an increasing continuous process. Moreover,

0 ≤ Xn(b − γ, t) − Xn(b − δ, t) ≤ Xn
δ,γ (t)

for all t ∈ [0, T ]. We also introduce the stopping time

σn
δ,γ := inf

{
t : Xn

δ,γ (t) = 1
}∧ T .

By Doob’s martingale inequality and the estimate

bn
δ,γ (t) ∨ 0 ≤ ξn(b − γ ) − ξn(b − δ), t ∈ [0, T ],

we get

E

[
sup

t∈[0,T ]
(
Xn(b − γ, t) − Xn(b − δ, t)

)α ∧ 1
]

≤ E

[
sup

t∈[0,T ]
(
Xn

δ,γ

(
t ∧ σn

δ,γ

))α]
≤ CαE

[(
Xn

δ,γ

(
T ∧ σn

δ,γ

))α]
≤ CαE

[
Xn

δ,γ

(
T ∧ σn

δ,γ

)]
≤ Cα

[
gn(b − γ ) − gn(b − δ) + T

(
ξn(b − γ ) − ξn(b − δ)

)]
,

where Cα = ( α
α−1 )α . Thus, by (c2) and (17),

E
[∥∥Xπ,n(b, ·) − Xπ,n(b − δ, ·)∥∥α

C[0,T ] ∧ 1
]≤ CαGn

b(δ, T ) ≤ CαCδ
1
2 +β.

This implies (16).
Property (c) can be proved in the same way as Lemma 2.5 [35], using the Aldous tightness criterion and the estimates

E

∫ T

0

dt

m
1+ β

2
n (u, t)

≤ C̃ < ∞,(18)
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E
∣∣Xπ,n(u, t)

∣∣≤ E

∣∣∣∣Xπ,n(u, t) −
∫ 1

0
Xn(v, t) dv

∣∣∣∣+E

∣∣∣∣∫ 1

0
Xn(v, t) dv

∣∣∣∣
≤ E
(
Xn(1, t) − Xn(0, t)

)+E

∣∣∣∣∫ 1

0
Xn(v, t) dv

∣∣∣∣
≤ gn(1) − gn(0) + T

(
ξn(1) − ξn(0)

)+E

∣∣∣∣∫ 1

0
Xn(v, t) dv

∣∣∣∣
for all n ≥ 1, where

∫ 1
0 Xn(v, t) dv = (Xn

t ,1)L2 , t ∈ [0, T ], is a Brownian motion, since it is a continuous martingale with
quadratic variation

∫ t

0 prXn
s

1ds = t (we note that (An
t ,1)L2 = 0). Here, (18) follows from (c1), (c2) and Corollaries 2.5,

2.9. The fact that Xn(v, t), t ≥ 0, is a (square-integrable) martingale for v ∈ {0,1} follows from (18). The proposition is
proved. �

Remark 3.6. If (c1), (c2) hold for some T > 0, then one can easily check that they hold for any T ≥ 0, with C depending
on T . Thus, under the assumptions of Proposition 3.4 (for some T > 0), the family {Xπ,n(u, t), u ∈ [a, b], t ∈ [0,∞)}n≥1
is tight in D([a, b],C[0,∞)).

4. Construction of CFWD

This section is devoted to the proof of theorems 1.3 and 1.1.

4.1. The reversible CFWD and a finite sticky-reflected particle system

In this section, we will recall the construction of a weak solution to SDE (3) for some class of functions g and ξ , using the
Dirichlet form approach. Namely, we are going to construct a reversible CFWD for “almost all” g ∈ L

↑
2 (ξ) and bounded

ξ ∈ D↑, as in [34]. In the case ξ ∈ S↑, we also show that the constructed process has a modification from the Skorohod
space satisfying (R1)–(R4). This is the first step of the construction of CFWD in the general case, where we obtain a
finite sticky-reflected particle system (see Proposition 4.6 below and Remark 2.3) needed for the approximation. We will
assume that ξ ∈ D↑ is a fixed bounded function.

We first introduce a measure �ξ on L
↑
2 which plays a role of an invariant measure for the reversible CFWD Xt , t ≥ 0.

We set for each n ∈ N

(19) En := {x = (xk)k∈[n] ∈ Rn : x1 < · · · < xn

}
and

Qn := {q = (qk)k∈[n−1] ∈ [0,1]n−1 : q1 < · · · < qn−1
}
, if n ≥ 2,

where [n] := {1, . . . , n}. Considering q ∈ Qn, we will always take q0 = 0 and qn = 1 for convenience. Let χ1 : R → L
↑
2

and χn : En × Qn → L
↑
2 , n ≥ 2, be given by

χ1(x) := xI[0,1] and χn(x, q) :=
n∑

k=1

xkI[qk−1,qk) + xnI{1}.

The functions χn(x, q) can be interpreted as the description of n clusters occupying positions x1 < x2 < · · · < xn whose
masses equal q1 − q0, q2 − q1, . . . , qn − qn−1, respectively. Similarly, χ1(x) describes a unique cluster of mass one
occupying position x. Setting

cn(q) :=
n∏

k=1

(qk − qk−1), n ≥ 2,

we define the measure on L
↑
2 as follows

�ξ :=
∞∑

n=1

�ξ
n,
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where

�
ξ
1(B) :=

∫
R

IB
(
χ1(x)
)
dx

and

�ξ
n(B) :=

∫
Qn

[
cn(q)

∫
En

IB
(
χn(x, q)

)
dx

]
dξ⊗(n−1)(q)

for all B ∈ B(L
↑
2 ). Here,

∫
Qn . . . dξ⊗(n−1)(q) is the (n − 1)-dim Lebesgue-Stieltjes integral with respect to ξ⊗(n−1)(q) =

ξ(q1) · . . . · ξ(qn−1). Roughly speaking, the measure �n is the distribution of n ordered clusters whose positions are uni-
formly distributed on the real line with masses q1 −q0, q2 −q1, . . . , qn −qn−1, where (q1, . . . , qn−1) have the distribution
defined by ∫

·

n∏
k=1

(qk − qk−1) dξ⊗(n−1)(q).

on Qn. The measure �ξ was first proposed in Section 4 [34].

Proposition 4.1. For each bounded ξ ∈ D↑ the measure �ξ is a σ -finite measure on L
↑
2 with supp�ξ = L

↑
2 (ξ).

Proof. The proof of the proposition was given in [34]. See Lemma 4.2 (ii), Remark 4.4 and Proposition 4.7 there. �

Next, we denote the linear space generated by functions on L
↑
2 of the form

(20) U = ϑ
(
(·, h1)L2 , . . . , (·, hm)L2

)
ϕ
(‖ · ‖2

L2

)= ϑ
(
(·,h)L2

)
ϕ
(‖ · ‖2

L2

)
by FC, where ϑ ∈ C∞

b (Rm), ϕ ∈ C∞
0 (R) and hj ∈ L2, j ∈ [m].

For each U ∈ FC we introduce its derivative as follows

DU(g) := prg
[∇L2U(g)

]
, g ∈ L

↑
2 ,

where ∇L2 denotes the Fréchet derivative on L2. If U is given by (20), then a simple calculation shows that

(21) DU(g) = ϕ
(‖g‖2

L2

) m∑
j=1

∂jϑ
(
(g,h)L2

)
prg hj + 2ϑ

(
(g,h)L2

)
ϕ′(‖g‖2

L2

)
g

for all g ∈ L
↑
2 , where ∂jϑ(x) := ∂

∂xj
ϑ(x), x ∈Rm.

The following integration by parts formula was proved in [34] (see Theorem 5.6 there).

Theorem 4.2. For each ξ ∈ D↑ and U,V ∈ FC∫
L

↑
2

(
DU(g),DV (g)

)
L2

�ξ(dg)

= −
∫

L
↑
2

L0U(g)V (g)�ξ (dg) −
∫

L
↑
2

V (g)
(∇L2U(g), ξ − prg ξ

)
L2

�ξ(dg),

(22)

where

L0U(g) = ϕ
(‖g‖2

L2

) m∑
i,j=1

∂i∂jϑ
(
(g,h)L2

)
(prg hi,prg hj )L2

+ ϑ
(
(g,h)L2

)[
4ϕ′′(‖g‖2

L2

)‖g‖2
L2

+ 2ϕ′(‖g‖2
L2

) · #g
]

+ 2
m∑

j=1

∂jϑ
(
(g,h)L2

)
ϕ′(‖g‖2

L2

)
(prg hj , g)L2 ,

if U is defined by (20).
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Remark 4.3. We note that #g is finite only for g ∈ S↑. Since �ξ(L
↑
2 \S↑) = 0, the function L0U is well-defined �ξ -a.e.

for all U ∈ FC. Moreover, it belongs to L2(L
↑
2 ,�ξ ), by Lemma 4.2 [34].

Since supp�ξ = L
↑
2 (ξ), we will define a bilinear form on L2(L

↑
2 (ξ),�ξ ). We set

Eξ (U,V ) = 1

2

∫
L

↑
2 (ξ)

(
DU(g),DV (g)

)
L2

�ξ(dg), U,V ∈ FC.

Then (Eξ ,FC) is a densely defined positive definite symmetric bilinear form on L2(L
↑
2 (ξ),�ξ ). Moreover, Theorem 4.2

and Proposition I.3.3 [37] imply that (Eξ ,FC) is closable on L2(L
↑
2 (ξ),�ξ ). Its closure will be denoted by (Eξ ,Dξ ).

Theorem 4.4. For each bounded ξ ∈ D↑ the bilinear form (Eξ ,Dξ ) is a quasi-regular local10 symmetric Dirichlet form
on L2(L

↑
2 (ξ),�ξ ). Moreover, if ξ is constant on some neighbourhoods of 0 and 1, then (Eξ ,Dξ ) is strictly quasi-regular

and conservative.

Proof. The proof of the theorem can be found in [34]. The fact that (Eξ ,Dξ ) is a Dirichlet form, the quasi-regularity and
the local property were proved in propositions 5.14, 6.5 and 6.6, respectively. The strict quasi-regularity and conserva-
tiveness were proved in Proposition 6.9. �

By theorems IV.6.4, V.1.11 [37] and Theorem 4.4, there exists a diffusion process11

X̃ = (�̃, F̃, (F̃t )t≥0, {X̃t }t≥0, {P̃g}g∈L
↑
2 (ξ)

)
with state space L

↑
2 (2ξ) = L

↑
2 (ξ) and life time ζ that is properly associated with (E2ξ ,D2ξ ).12 Furthermore, if ξ is

constant on some neighbourhoods of 0 and 1, then X̃ is a Hunt process with infinite life time.
We set

M̃t := X̃t − X̃0 −
∫ t

0
(ξ − pr

X̃s
ξ ) ds, t ≥ 0,

and denote the expectation with respect to P̃g by Ẽg .

Proposition 4.5. Let ξ ∈ D↑ be constant on some neighbourhoods of 0 and 1. Then there exists a set �ξ ⊆ L
↑
2 (ξ) with

E2ξ -exceptional complement (in L
↑
2 (ξ)) such that for every g ∈ �ξ Ẽg‖X̃t‖2

2 < ∞, t ≥ 0, and for each h ∈ L2 the process

(M̃t , h)L2 = (X̃t , h)L2 − (X̃0, h)L2 −
∫ t

0
(ξ − pr

X̃s
ξ, h)L2 ds, t ≥ 0,

is a continuous square-integrable (F̃t )-martingale under P̃g with quadratic variation

[
(M̃·, h)L2

]
t
=
∫ t

0
‖pr

X̃s
h‖2

L2
ds, t ≥ 0.

In particular, X̃ is a weak solution to SDE (3) on the probability space (�̃, F̃, P̃g).

Proof. See Corollary 8.2 [34] for the proof of the proposition. �

We remark that from the technical point of view the assumption that ξ is constant in some neighborhoods of 0 and 1
is needed for the local compactness of the state space L

↑
2 (ξ) for the reversible CFWD X̃ (see Lemma 6.8 [34]). In that

case, the proof of the strict quasi-regularity and conservativity of the Dirichlet form (Eξ ,Dξ ) can be easily proved using
methods from [19]. From the intuitive point of view, the clusters in maximal and minimal spatial positions have bounded

10For the definition of quasi-regularity, strict quasi-regularity and local property see def. IV.3.1, V.2.11 and V.1.1 [37], respectively.
11See Definition V.1.10 [37].
12We consider the interaction potential 2ξ instead of ξ in order to obtain solutions to SDE with the drift term (ξ −prXt

ξ) dt instead of 1
2 (ξ −prXt

ξ) dt

(see Section 8 [34]).
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diffusion rates since they cannot fragment according to Lemma 2.1. Therefore, particles between these two clusters cannot
run to infinity during a finite time, which explains the infiniteness of the life time.

In the rest of this section we suppose that ξ =∑n
k=1 ςkIπk

∈ S↑, where ςk < ςk+1, k ∈ [n − 1], and {πk, k ∈ [n]} is a
partition of [0,1].

Let X̃(·, t,ω) denote the modification of X̃t (ω) from D↑ for each ω ∈ �̃ and t ≥ 0. Since X̃ takes values in the space
L

↑
2 (ξ), it is easy to see that

X̃(u, t) =
n∑

k=1

x̃k(t)Iπk
(u), u ∈ [0,1], t ≥ 0,

where x̃k(t) = 1
Leb(πk)

(X̃t , Iπk
)L2 , by Proposition A.2 [34]. This yields that the process X̃(u, t), t ≥ 0, is continuous for

every u ∈ [0,1].

Proposition 4.6. The process {X̃(u, t), u ∈ [0,1], t ≥ 0} belongs to the Skorohod space D([0,1],C[0,∞)) and for each
g ∈ �ξ it satisfies properties (R1)–(R4) on the probability space (�̃, F̃, P̃g).

Proof. The statement follows from Proposition 4.5 and the following property of the projection operator:

(
prf hu,prf hv

)
L2

= I{f (u)=f (v)}
mf (u)

for all u,v ∈ [0,1] and f =∑n
k=1 yiIπk

∈ S↑, where hu := 1
Leb(πk)

Iπk
with k satisfying u ∈ πk and mf (u) := Leb{v :

f (u) = f (v)}.
The detaled proof is omited here since we will prove Theorem 1.3(ii) in a more general setting later. �

Note that according to Remark 2.3, the family of semimartingales X̃(u, ·), u ∈ [0,1], defines a finite sticky-reflected
particle system whose evolution is described by the processes x̃k , k ∈ [n].

4.2. Existence of solutions to SDE (3) (proof of Theorem 1.3(i))

The goal of this section is to show that equation (3) has a weak solution for any initial condition g ∈ L
↑
2+δ and ξ ∈ L

↑∞,
where δ as a positive number. This will prove Theorem 1.3(i).

4.2.1. Tightness of finite particle systems
We recall that, by propositions 4.5 and 4.6, for every ξ ∈ S↑ and g ∈ �ξ there exists a weak solution to SDE (3) satisfying

(R1)–(R4), where �ξ is defined in Proposition 4.5. Moreover, �ξ is dense in L
↑
2 (ξ), since �ξ(L

↑
2 (ξ) \ �ξ) = 0 and

supp�ξ = L
↑
2 (ξ) (see Proposition 4.1).

We fix g ∈ L
↑
2+δ and ξ ∈ L

↑∞ for some δ > 0. In order to prove the existence of solutions to SDE (3), we first construct
sequences {gn,n ≥ 1} ∈ S↑ and {ξn, n ≥ 1} ∈ S↑ such that gn ∈ �ξn for all n ≥ 1, gn → g, ξn → ξ in L2+δ and {ξn(1) −
ξn(0), n ≥ 1} bounded. Set

ξn :=
2n∑

k=1

(
k

22n
+ ξ

(
k − 1

2n

))
I[ k−1

2n , k
2n )

+
(

1

2n
+ ξ(1)

)
I{1}, n ≥ 1.

Since ξ is discontinuous at most in a countable number of points, ξn → ξ a.e. and, thus, it convergences in L2+δ , by
the dominated convergence theorem. Moreover, ξn(1) − ξn(0) = ξ(1) − ξ(0) + 1

2n − 1
22n for all n ≥ 1, that implies the

boundedness of {ξn(1) − ξn(0), n ≥ 1}. We also note that

L
↑
2 (ξn) =

{
f ∈ L

↑
2 : f is σ ∗

({[
k − 1

2n
,

k

2n

)
, k ∈ [2n

]})
-measurable

}
,

due to the term k

22n in the definition of ξn and the monotonicity of ξ . To construct gn, n ≥ 1, we first set

g̃n := prξn
g =

n∑
k=1

yn
k I[ k−1

2n , k
2n )

, n ≥ 1,
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where

yn
k = 2n

∫ k
2n

k−1
2n

g(v) dv.

Since g̃n ∈ L
↑
2 (ξn), the set �ξn is dense in L

↑
2 (ξn) and ‖ · ‖L2+δ

is equivalent to ‖ · ‖L2 in L2(ξn) because L2(ξn) is
finite dimensional, for each n ≥ 1 we can find gn ∈ �ξn satisfying ‖gn − g̃n‖L2+δ

< 1
n

. Using, e.g., Theorem 1 [1] and
Remark A.2(ii), we obtain gn → g in L2+δ .

Let Xn be a weak solution to SDE (3) with g and ξ replaced by gn and ξn, which exists according to Proposition 4.5
and describes the evolution of a finite particle system (see also Remark 2.3). We recall that

Xn
t = gn + Mn

t + An
t , t ≥ 0,

where

An
t =
∫ t

0
(ξn − prXn

s
ξn) ds

and Mn is a continuous square-integrable (FXn

t )-martingale in L2 with quadratic variation process

⟪Mn⟫t =
∫ t

0
prXn

s
ds, t ≥ 0,

and the increasing process 〈
Mn
〉
t
=
∫ t

0
‖prXn

s
‖2

HS ds, t ≥ 0.

Let X
n
, n ≥ 1, be defined by (14), that is,

X
n = (Mn,An,

([
Mn(ei),M

n(ej )
])

(i,j)∈N2,
〈
Mn
〉)
,

for a fixed orthonormal basis {ei, i ∈ N} of L2. Then, by Corollary 3.3, there exists a subsequence N ⊆ N such that
X

n → X in W in distribution along N , where

W = C
([0,∞),L2

)× C
([0,∞),L2

)× C[0,∞)N
2 × C[0,∞).

Next, by Skorohod representation Theorem 3.1.8 [16], we can find a probability space and define there random ele-
ments Z,Z

n
, n ∈ N , taking values in W such that Law(X) = Law(Z), Law(X

n
) = Law(Z

n
) and Z

n → Z in W a.s. along
N . We also note that {E‖MZn

t ‖2
L2

= E‖MXn

t ‖2
L2

, n ≥ 1} is bounded for all t ≥ 0, by Corollary 2.12 and Remark 1.8(iii).

In the next section, we will construct a solution to (3) using the process Z.

4.2.2. Identification of the limit
To obtain a solution to equation (3) from the process Z, constructed in the previous section, we will prove a kind of
stability of solutions to equation (3) under passing to the limit. We assume that {gn,n ≥ 1}, {ξn, n ≥ 1} are arbitrary
sequences of functions from L

↑
2 (not necessarily from S↑) and processes Xn,n ≥ 1, defined on the same probability

space, are weak solutions to SDE (3) with initial conditions gn and interacting potentials ξn. As in the previous section
we express Xn in the form

Xn
t = gn + Mn

t + An
t , t ≥ 0,

and define

X
n = (Mn,An,

([
Mn(ei),M

n(ej )
])

(i,j)∈N2,
〈
Mn
〉)
,

where {ei, i ∈ N} is the fixed orthonormal basis of L2.

Theorem 4.7. Let {gn,n ≥ 1}, {ξn, n ≥ 1} converge to g and ξ in L2, respectively. Let also the sequence of stochastic
processes {Xn

,n ≥ 1} converge to X = (M,A, (xi,j ), a) in W a.s. and {E‖Mn
t ‖2

L2
, n ≥ 1} is bounded for all t ≥ 0. Then

(a) the process Xt := g + Mt + At , t ≥ 0, takes values in L
↑
2 ;
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(b) M is a continuous square-integrable martingales in L2 with quadratic variation

(23) ⟪M⟫t =
∫ t

0
prXs

ds, t ≥ 0,

in particular,

(24) xi,j (t) =
∫ t

0
(prXs

ei, ej )L2 ds, i, j ∈ N,

and

(25) a(t) =
∫ t

0
‖prXs

‖2
HS ds

for all t ≥ 0;
(c) At = ∫ t

0 (ξ − prXs
ξ) ds, t ≥ 0;

(d) for each T > 0,
∫ T

0 ‖prXn
s
−prXs

‖2
HS ds → 0 a.s. as n → ∞.

In particular, X is a weak solution to SDE (3).

Theorem 4.7 will be proved using the deterministic result from Section A.3. The following lemmas are needed to
check that Xt , t ∈ [0, T ], satisfies the assumptions of Proposition A.8 almost surely.

Lemma 4.8. Under the assumptions of Theorem 4.7, for each T > 0 there exists a random element P ∞ in
L2([0, T ],L2(L2)) such that

P
{
P n → P ∞ weakly in L2

([0, T ],L2(L2)
)

as n → ∞}= 1,

where P n := prXn· , n ≥ 1.

Proof. We set

�′ := {ω : 〈Mn
〉
(ω) → a(ω) in C[0, T ]}∩ {ω : [Mn(ei),M

n(ej )
]
(ω) → xi,j (ω) in C[0, T ] for all i, j ∈ N

}
.

It is obvious that P{�′} = 1. We take ω ∈ �′ and show that there exists P ∞(ω) ∈ L2([0, T ],L2(L2)) such that P n(ω) →
P ∞(ω) weakly in L2([0, T ],L2(L2)) as n → ∞. Since the sequence

〈
Mn
〉
T
(ω) =

∫ T

0

∥∥P n
t (ω)
∥∥2

HS dt = ∥∥P n(ω)
∥∥2

T ,HS, n ≥ 1,

converges to a(T ,ω), it is bounded. Thus, by the Banach-Alaoglu theorem, {P n(ω),n ≥ 1} is weakly compact in
L2([0, T ],L2(L2)). Moreover, it has a unique weak limit point denoted by P ∞(ω). Indeed, if {P n(ω),n ≥ 1} weakly
converges to P ′ along N ′ and to P ′′ along N ′′, then for each i, j ∈ N and t ∈ [0, T ]∫ t

0

(
P ′

s (ω)ei, ej

)
L2

ds =
∫ t

0

(
P ′′

s (ω)ei, ej

)
L2

ds = xi,j (ω, t)

because

(26)
(
Bt ,P n(ω)

)
T ,HS =

∫ t

0

(
P n

s (ω)ei, ej

)
L2

ds → xi,j (ω, t)

for Bt
s := I[0,t](s)ei ⊗ ej , s ∈ [0, T ]. Hence, Corollary A.11 implies P ′ = P ′′. Thus, {P n(ω),n ≥ 1} weakly converges in

L2([0, T ],L2(L2)) to P ∞(ω).
We note that the measurability of the map P ∞ : � → L2([0, T ],L2(L2)) (here, P ∞(ω) = 0, if ω /∈ �′) will easily

follow from the facts that P ∞ is a weak limit of random elements in L2([0, T ],L2(L2)) and Theorem II.1.1 [48]. The
lemma is proved. �
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Lemma 4.9. Under the assumptions of Theorem 4.7, for each T > 0

P
{‖Pth‖L2 ≤ lim

n→∞
∥∥P n

t h
∥∥

L2
,∀t ∈ [0, T ],∀h ∈ L2

}= 1,

where P := prX· and P n = prXn· , n ≥ 1.

Proof. The lemma immediately follows from the convergence of {Xn,n ≥ 1} a.s. in C([0, T ],L↑
2 ) and Lemma A.7. �

Proof of Theorem 4.7. Property (a) easily follows from the closability of L
↑
2 in L2.

In order to show (b), we only have to check equality (24). Indeed, the convergence of {Xn
,n ≥ 1} to X =

(M,A,xi,j , a) in W a.s. yields that the process M is a continuous square-integrable (FX
t )-martingale in L2 with

[M(ei),M(ej )] = xi,j and 〈M〉 = a. This easily follows from the fact that the weak limit in C[0,∞) of local mar-
tingales is a local martingale (see, e.g., Corollary 9.1.19 [23]), the boundedness of {E‖Mn

t ‖2
L2

, n ≥ 1} and Fatou’s lemma.
Therefore, (23) will follow from (24), and Lemma 2.1 [20] and (23) will imply equality (25).

By lemmas 4.8, 4.9 and Proposition A.12, trajectories of X and Xn,n ≥ 1, satisfy conditions (a)–(c) of Proposition A.8
almost surely. Thus,

(27) P
{
P n → P weakly in L2

([0, T ],L2(L2)
)

as n → ∞}= 1

for any fixed T > 0. This immediately implies (24), by (26).
Next, (27) and the convergence∥∥P n

∥∥2
T ,HS = 〈Mn

〉
T

→ a(T ) = 〈M〉T = ‖P‖2
T ,HS a.s. as n → ∞

yield the strong convergence (d).
For fixed t ∈ [0, T ] and h ∈ L2 we take

Bs := I[0,t](s)ξ ⊗ h, Bn
s := I[0,t](s)ξn ⊗ h, s ∈ [0, T ], n ≥ 1.

Then, using the strong convergence of {P n,n ≥ 1} to P and {Bn,n ≥ 1} to B , we have∫ t

0
(prXn

s
ξn, h)L2 ds = (P n,Bn

)
T ,HS → (P,B)T,HS =

∫ t

0
(prXs

ξ,h)L2 ds.

Hence, for each h ∈ L2

(At , h)L2 =
∫ t

0
(ξ − prXs

ξ,h) ds, t ∈ [0, T ],
that implies (c). The theorem is proved. �

We now are ready to conclude that SDE (3) has a weak solution for any g ∈ L
↑
2+δ and ξ ∈ L

↑∞. Let Z
n
, n ≥ 1, and Z

be the random elements in W defined in Section 4.2.1. Then they satisfy the assumptions of Theorem 4.7. Therefore, the
process X = g + A + M solves equation (3), where M and A are the first and the second components of Z, respectively.
The proof of Theorem 1.3(i) is completed.

4.3. Equivalence between two definitions of CFWD (Proof of Theorem 1.3(ii))

Let Y = {Y(u, t), u ∈ [0,1], t ∈ [0,∞)} be a random element in D([0,1],C[0,∞)) and Xt , t ≥ 0, be a continuous
process in L

↑
2 such that E‖Xt‖2

L2
< ∞ and

Y(·, t) = Xt in L2 a.s.

for all t ≥ 0. In this section, we will prove that Y satisfies (R1)–(R4) if and only if X is a solution to SDE (3).

Remark 4.10. Since the processes Xt , t ≥ 0, and Y(·, t), t ≥ 0, are continuous in L2, we have

P
{
Xt = Y(·, t) in L2 for all t ≥ 0

}= 1.

In particular,

P{prXt
= prY(·,t) for all t ≥ 0} = 1.
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4.3.1. Auxiliary statements
Lemma 4.11. Let b : [0,1] × [0, T ] → R be a measurable bounded function such that the function b(u, t), u ∈ [0,1], is
càdlág for all t ∈ [0, T ]. Then the function

B(u, t) =
∫ t

0
b(u, s) ds, u ∈ [0,1], t ∈ [0, T ],

belongs to D([0,1],C[0, T ]).

Proof. Let un ↓ u. Then B(un, t) → B(u, t) for any t ∈ [0, T ], by the dominated convergence theorem and the right
continuity of b(·, t) for all t ∈ [0, T ]. Moreover, by the Arzela-Ascoli theorem, {B(un, ·), n ≥ 1} is compact in C[0, T ].
Thus, B(un, ·) → B(u, ·) in C[0, T ]. Similarly, B(un, ·) → B(u−, ·) := ∫ ·

0 b(u−, s) ds in C[0, T ] as un ↑ u. The lemma
is proved. �

We define for each u ∈ [0,1) and ε > 0 the functions from L2 as follows

hu
ε (v) = 1

ε ∧ (1 − u)
I[u,(u+ε)∧1)(v), v ∈ [0,1],

and

h1
ε(v) = 1

ε ∧ 1
I[(1−ε)∨0,1](v), v ∈ [0,1].

Lemma 4.12. Let a function f (u, t), u ∈ [0,1], t ∈ [0, T ], belong to D([0,1],C[0, T ]). Then for each u ∈ [0,1] the
sequence of functions {(f (·, t), hu

ε )L2 , t ∈ [0, T ]}ε>0 converges to f (u, t), t ∈ [0, T ], in C[0, T ] as ε → 0+.

Proof. We first note that for every u ∈ [0,1) and ε̃ > 0 there exists δ > 0 such that∣∣f (u, t) − f (v, t)
∣∣< ε̃, t ∈ [0, T ], v ∈ [u,u + δ).

In particular, f (v, t), t ∈ [0, T ], v ∈ [u,u + δ), is bounded. Hence, for each ε ∈ (0, δ] the function (f (·, t), hu
ε )L2 , t ∈

[0, T ], belongs to C[0, T ], by the dominated convergence theorem, and

∣∣(f (·, t), hu
ε

)
L2

− f (u, t)
∣∣≤ ∫ 1

0

∣∣f (v, t) − f (u, t)
∣∣hu

ε (v) dv < ε̃.

For u = 1 the convergence follows from the same argument and the continuity of f (v, ·), v ∈ [0,1], at v = 1. This proves
the lemma. �

Lemma 4.13. Let f ∈ S↑ and 0 ≤ u < v ≤ 1. Then

(28)
(
prf hu

ε ,prf hv
ε

)
L2

→ 1

mf (u)
I{f (u)=f (v)} as ε → 0+

and

(29) 0 ≤ (prf hu
ε ,prf hv

ε

)
L2

≤

⎧⎪⎨⎪⎩
1

v − u − ε
, ε ∈ (0, v − u), v < 1,

1

v − u − 2ε
, ε ∈

(
0,

v − u

2

)
, v = 1,

where mf (u) = Leb{v : f (u) = f (v)}.

Proof. Convergence (28) follows from Lemma A.3 and a simple calculation.
We show (29) only for v < 1. For this, we fix ε ∈ (0, v − u) and consider the following two cases.

(a) f (u + ε) < f (v). Then, by Lemma A.3, supp(prf hu
ε ) ∩ supp(prf hv

ε) =∅. This implies that(
prf hu

ε ,prf hv
ε

)
L2

= 0.
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(b) f (u+ε) = f (v). Let ũ, ṽ be the ends of the interval {r : f (v) = f (r)} and ũ < ṽ. Then, ũ ≤ u+ε < v < ṽ. Moreover,(
prf hu

ε

)
(r)
(
prf hv

ε

)
(r) = 0, r /∈ [ũ, ṽ),

and (
prf hu

ε

)
(r)
(
prf hv

ε

)
(r) = 1

ε2(ṽ − ũ)2

∫
[ũ,ṽ)

I[u,u+ε)(r) dr

∫
[ũ,ṽ)

I[v,v+ε)(r) dr ≤ 1

(ṽ − ũ)2
, r ∈ [ũ, ṽ).

Hence,

(
prf hu

ε ,prf hv
ε

)
L2

≤ 1

(ṽ − ũ)2

∫ 1

0
I[ũ,ṽ)(r) dr ≤ 1

v − u − ε
.

The lemma is proved. �

4.3.2. Proof of Theorem 1.3(ii)
We first assume that the process Xt , t ≥ 0, is a weak solution to SDE (3) with the martingale part M := MX and the
part of bounded variation A := AX and check that Y satisfies (R1)–(R4). The idea of proof is similar to the proof of
Theorem 6.4 [29]. Namely, we are going to approximate Y(u, ·) by {(X,hu

ε )L2}ε>0.
We note that property (R1) is trivial.
Let

AY (u, t) : =
∫ t

0

(
ξ(u) − (prY(·,s) ξ )(u)

)
ds =
∫ t

0

(
ξ(u) − 1

mY (u, s)

∫
πY (u,s)

ξ(v) dv

)
ds, u ∈ [0,1], t ≥ 0,

where the equality follows from Lemma A.3. By Lemma 4.11, AY (u, t), u ∈ [0,1], t ∈ [0, T ], belongs to D([0,1],
C[0, T ]) for any T > 0 and, thus, AY belongs to D([0,1],C[0,∞)). Hence, MY := Y − g − AY also belongs to
D([0,1],C[0,∞)).

Let hu
ε be defined as before for each u ∈ [0,1] and ε > 0. Then, by Lemma 4.12 and Remark 4.10,

(30)
(
M·, hu

ε

)
L2

→ MY (u, ·) in C[0, T ] a.s. as ε → 0+
and

(31)
(
X·, hu

ε

)
L2

→ Y(u, ·) in C[0, T ] a.s. as ε → 0+

for all T > 0. Thus, Y satisfies (R2), by Proposition A.1 [29]13 and Remark 4.10. We also note that (31) yields FY
t =FX

t

for all t ≥ 0.
Taking arbitrary u ∈ (0,1), ε0 ∈ (0, u∧ (1−u)) and using Proposition A.1 [29], we have for every t ≥ 0 and ε ∈ (0, ε0]∣∣(Xt,h

u
ε

)
L2

∣∣≤ ∣∣(Xt,h
0
ε0

)
L2

∣∣+ ∣∣(Xt,h
1
ε0

)
L2

∣∣
and ∣∣(g,hu

ε

)
L2

∣∣≤ ∣∣(g,h0
ε0

)
L2

∣∣+ ∣∣(g,h1
ε0

)
L2

∣∣.
Hence, ∣∣(Mt,h

u
ε

)
L2

∣∣≤ ∣∣(g,hu
ε

)
L2

∣∣+ ∣∣(Xt,h
u
ε

)
L2

∣∣+ ∣∣(At,h
u
ε

)
L2

∣∣
≤ ∣∣(g,h0

ε0

)
L2

∣∣+ ∣∣(g,h1
ε0

)
L2

∣∣+ ∣∣(Xt,h
0
ε0

)
L2

∣∣+ ∣∣(Xt,h
1
ε0

)
L2

∣∣+ 2t‖ξ‖L∞

13We remind the reader that the proposition claims that a function f ∈ L2 belongs to L
↑
2 if and only if for every u,v ∈ (0,1) and ε, δ > 0 satisfying

u + ε ≤ v one has (f,hu
ε )L2 ≤ (f,hv

δ )L2 . Moreover, the unique modification f̃ of f is given by

f̃ (u) = lim
ε→0+
(
f,hu

ε

)
L2

, u ∈ (0,1).
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for all t ≥ 0 and ε ∈ (0, ε0]. To estimate (At , h
u
ε )L2 , we used the inequality ‖prXt

ξ‖L∞ ≤ ‖ξ‖L∞ which follows from
Lemma A.3. By (30), the fact that (Mt ,h

u
ε )L2 , t ≥ 0, is a square-integrable (FY

t )-martingale for every ε > 0, the dom-
inated convergence theorem and the finiteness of E‖Xt‖2

L2
, we have that MY (u, t), t ≥ 0, is a square-integrable (FY

t )-

martingale. In the case u ∈ {0,1}, using the convergence of {(M·, hu
ε )}ε>0 to MY (u, ·) and {(X·, hv

ε)}ε>0 to Y(v, ·) in
C[0, T ] a.s. for every v ∈ [0,1], one can show that MY (u, t), t ≥ 0, is a local (FY

t )-martingale similarly to the proof of
Proposition 9.1.17 [23]. This proves (R3).

Next, (30), Lemma B.11 [6] and the polarization formula for joint quadratic variation of martingales yield[(
M·, hu

ε

)
L2

,
(
M·, hv

ε

)
L2

]→ [MY (u, ·),MY (v, ·)]
in C[0,∞) in probability as ε → 0+ for all u,v ∈ (0,1).

By the finiteness of the expectation E‖Mt‖2
L2

< ∞, the equality

E

∫ t

0
‖prY(·,s) ‖2

HS ds = E

∫ t

0
‖prXs

‖2
HS ds = E‖Mt‖2

L2
< ∞, t ≥ 0,

and Lemma A.6, we have

(32) P
{∃R ⊆ [0,∞) s.t. Leb

([0,∞) \ R) = 0 and Y(·, t) ∈ S↑ ∀t ∈ R
}= 1.

Thus, applying Lemma 4.13 to f = Y(·, t,ω) and using the dominated convergence theorem, we obtain

[(
M·, hu

ε

)
L2

,
(
M·, hv

ε

)
L2

]
t
=
∫ t

0

(
prY(·,s) hu

ε ,prY(·,s) hv
ε

)
L2

ds →
∫ t

0

I{Y(u,s)=Y(v,s)}
mY (u, s)

ds a.s. as ε → 0+

for any t ≥ 0. This implies (R4) for all u,v ∈ [0,1], u 	= v.
To finish the proof of the theorem, we have to check (R4) for u = v ∈ [0,1]. Since MY ∈ D([0,1],C[0,∞)), we have

MY (v, ·) → MY (u, ·) in C[0,∞) a.s.

as v ↓ u, if u < 1, and v ↑ u, if u = 1. Thus, by Lemma B.11 [6] and the polarization formula for joint quadratic variation
of martingales, [

MY (v, ·),MY (u, ·)]→ [MY (u, ·)] in C[0,∞) in probability.

Using (32), Lemma A.3 and the monotone convergence theorem, it is easily seen that for each t ≥ 0

[
MY (v, ·),MY (u, ·)]

t
=
∫ t

0

I{Y(u,s)=Y(v,s)}
mY (u, s)

ds →
∫ t

0

ds

mY (u, s)

as v ↓ u, if u < 1, and v ↑ u, if u = 1. The firs part of the statement is proved.
If Y satisfies (R1)–(R4), then a direct computation shows that X satisfies property (E′4) of Remark 1.8. This imme-

diately implies that X solves equation (3), that completes the proof of Theorem 1.3(ii).

4.4. CFWD as a family of semimartingales (proof of Theorem 1.1)

Let g, ξ ∈ D([0,1],R) be non-decreasing piecewise 1
2+-Hölder continuous functions on [0,1]. Then there exist γ > 1

2 ,
an ordered partition 0 = ũ0 < ũ1 < · · · < ũl = 1 and a constant C > 0 such that∣∣g(u) − g(v)

∣∣∨ ∣∣ξ(u) − ξ(v)
∣∣≤ C|u − v|γ , u, v ∈ (ũi−1, ũi ), i ∈ [l].

To construct a random element in the Skorohod space D([0,1],C[0,∞)) satisfying conditions (R1)–(R4), we will show
the existence of a solution to equation (3) which has a modification from D([0,1],C[0,∞)). The approach will be similar
to the proof of Theorem 1.3(ii), but now we have to build sequences {gn,n ≥ 1} ∈ S↑ and {ξn, n ≥ 1} ∈ S↑ which also
satisfy conditions (c1), (c2) of Proposition 3.4 on every interval (ũi−1, ũi), i ∈ [l].

Letting un
i,j , j = 0, . . . ,2n, be the uniform partition of [ũi−1, ũi] for each i ∈ [l] and n ≥ 1, we define the functions

ιn : [0,1] → [0,1] as follows

ιn(u) =
l∑

i=1

2n∑
j=1

un
i,j−1I[un

i,j−1,u
n
i,j )(u) + un

l,2n−1I{un
l,2n }(u), u ∈ [0,1], n ≥ 1.
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Then the functions ιn belong to D↑ and map [ũi−1, ũi ) into [ũi−1, ũi) for any i ∈ [l]. We put for every n ≥ 1

ξn :=
(

ξ + 1

n
id

)
◦ ιn

14 and g̃n := g ◦ ιn,

where id denotes the identity function on [0,1]. As before, for each n ≥ 1 we can take gn ∈ �ξn such that ‖gn − g̃n‖L∞ <
1

2γ n . By the boundedness of g and ξ and the dominated convergence theorem, gn → g and ξn → ξ in L2+δ . Moreover,
{ξn(1) − ξn(0), n ≥ 1} is bounded.

Next, we check (c1) and (c2) for every (a, b) := (ũi−1, ũi ), i ∈ [l]. We take u ∈ (a, b) and r > 0 such that u+ r, u− r ∈
(a, b) and estimate [gn(u + r) − gn(u)][gn(u) − gn(u − r)] for each n ≥ 1. First, we note that for r < b−a

2n+1[
gn(u + r) − gn(u)

][
gn(u) − gn(u − r)

]= 0,

since gn(u + r) − gn(u) = 0 or gn(u) − gn(u − r) = 0. Next, let r ≥ b−a

2n+1 . Then

[
gn(u + r) − gn(u)

][
gn(u) − gn(u − r)

]≤ [g̃n(u + r) − g̃n(u) + 2

2γ n

][
g̃n(u) − g̃n(u − r) + 2

2γ n

]
=
[
g
(
ιn(u + r)

)− g
(
ιn(u)
)+ 2

2γ n

][
g
(
ιn(u)
)− g
(
ιn(u − r)

)+ 2

2γ n

]
≤
[
C
(
ιn(u + r) − ιn(u)

)γ + 2

2γ n

][
C
(
ιn(u) − ιn(u − r)

)γ + 2

2γ n

]

≤
(

3γ C + 2γ+1

(b − a)γ

)2

r2γ ,

since [
ιn(u + r) − ιn(u)

]∨ [ιn(u) − ιn(u − r)
]≤ r + b − a

2n
≤ 3r for r ≥ b − a

2n+1
.

Similarly,

[
gn(u + r) − gn(u)

][
ξn(u) − ξn(u − r)

]≤ C̃r2γ ,[
ξn(u + r) − ξn(u)

][
gn(u) − gn(u − r)

]≤ C̃r2γ ,[
ξn(u + r) − ξn(u)

][
ξn(u) − ξn(u − r)

]≤ C̃r2γ .

Thus, {gn,n ≥ 1} and {ξn, n ≥ 1} satisfy (c1) of Proposition 3.4 with β = 2γ > 1 and π = [ũi−1, ũi].
Estimate (c2) can be proved similarly, using the Hölder continuity of g and ξ on (ũi−1, ũi ) and the form of the maps

ιn, n ≥ 1.
As before, let Xn

t , t ≥ 0, be a weak solution to SDE (3) with g and ξ replaced by gn and ξn. Let X
n
, n ≥ 1, be defined

by (14). Let also {Yn(u, t), u ∈ [0,1], t ≥ 0}, n ≥ 1, be random elements in D([0,1],C[0,∞)) satisfying (R1)–(R4) and
Xn

t = Yn(·, t) in L2 for all t ≥ 0 almost surely. Such random elements exists by Proposition 4.6.
According to propositions 3.2, 3.4, A.14 and Remark 3.6, the sequence {(Xn

,Y n), n ≥ 1} is tight in W ×
D([0,1],C[0,∞)). As before, we can find a subsequence N ⊆ N, a probability space and a family of random elements
{(Z,V ), (Z

n
,V

n
), n ∈ N} on this probability space such that Law(X

n
,Y n) = Law(Z

n
,V n), Law(X,Y ) = Law(Z,V )

and (Z
n
,V n) → (Z,V ) in W × D([0,1],C[0,∞)) a.s. along N . Then, by Proposition 4.7 and Corollary 2.12, the pro-

cess Z := g + AZ + MZ is a weak solution to SDE (3), where Z = (MZ,AZ, (xZ
i,j ), a

Z). Moreover, Zt = V (·, t) in L2

for all t ≥ 0 almost surely. Hence, V satisfies (R1)-(R4), by Theorem 1.3(ii). The theorem is proved.

14The function 1
n id is needed here in order to have σ∗(ξn) = σ∗([ui,j−1, ui,j

)
, j ∈ [2n

]
, i ∈ [l]). Note that it can be replaced by, e.g., any strictly

increasing γ -Hölder continuous function.
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Appendix

A.1. The sitting time at zero of non-negative semimartingales

Proposition A.1. Let (Ft )t≥0 be a complete right-continuous filtration and y(t), t ≥ 0, be a continuous non-negative
(Ft )-semimartingale such that

(33) y(t) = y0 +
∫ t

0
ρ(s)I{y(s)>0} dB(s) + ξ0

∫ t

0
I{y(s)=0} ds, t ≥ 0,

where y0, ξ0 are non-negative constants, ρ(t), t ≥ 0, is an (Ft )-predictable process taking values in [1,∞) and satisfying∫ t

0
ρ(s)2I{y(s)>0} ds < ∞ a.s.

for all t > 0, and B(t), t ≥ 0, is an (Ft )-Brownian motion. Then for every t ≥ 0

E

∫ t

0
I{y(s)>0} ds ≤

√
2t

π
(ξ0t + y0).

Proof. We set

Rt :=
∫ t

0
I{y(s)>0} ds, t ≥ 0,

and use the idea from [15, P. 998–999] in order to estimate ERt . We will consider two cases.
Case I: ξ0 > 0.
To estimate ERt , we first show that Rt , t ≥ 0, is strictly increasing. Let us assume that it is not true, i.e,

P{∃t1 < t2Rt1 = Rt2} > 0.

By the monotonicity of Rt , t ≥ 0, we can conclude that there exist (non-random) t1, t2 ≥ 0, t1 < t2, such that

P{Rt1 = Rt2} > 0.

Therefore, by the continuity of y, y(r) = 0, r ∈ [t1, t2], with positive probability. Hence∫ t

0
ρ(s)I{y(s)>0} dB(s) = y0 − ξ0

∫ t

0
I{y(s)=0} ds = y0 − ξ0

∫ t1

0
I{y(s)=0} ds − ξ0(t − t1), t ∈ [t1, t2],

with positive probability. But this contradicts the fact that every continuous local martingale with bounded variation is
constant (see, e.g., Theorem 17.2 [25]). Consequently, the continuous process Rt , t ≥ 0, is strictly increasing a.s.

We next define

R∞ := lim
t→∞Rt

and

At := inf{s ≥ 0 : Rs > t}, t ≥ 0,

which is a continuous strictly increasing process on [0,R∞) and At → ∞ as t increases to R∞. Note that At is an
(Ft )-stopping time for each t ≥ 0. Let T > 0 be fixed. Then for the continuous local (Ft )-martingale

N
ρ
t :=
∫ t

0
ρ(s)I{y(s)>0} dB(s), t ≥ 0,

the process

N ′
t := N

ρ
At∧T =

∫ At∧T

0
ρ(s)I{y(s)>0} dB(s), t ≥ 0.

is a continuous local (F ′
t )-martingale, where F ′

t := FAt .
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Denoting

Qt :=
∫ Rt

0
ρ(As)

2 ds, t ≥ 0,

and using the change of variables formula, we can see that

Qt =
∫ t

0
ρ(ARs )

2 dRs =
∫ t

0
ρ(ARs )

2I{y(s)>0} ds =
∫ t

0
ρ(s)2I{y(s)>0} ds

for all t ≥ 0, since At , t ≥ 0, is the inverse for Rt , t ≥ 0. Thus,

(34)
[
N ′]

t
= [Nρ

]
At∧T

=
∫ At∧T

0
ρ(s)2I{y(s)>0} ds = QAt∧T =

∫ RAt ∧T

0
ρ(As)

2 ds =
∫ t∧RT

0
ρ(As)

2 ds

for any t ≥ 0.
Next, by Skorohod Lemma 22.2 [25], we directly get

ξ0

∫ t

0
I{y(s)=0} ds =

{
−y0 − inf

s≤t
Nρ

s

}
∨ 0, t ≥ 0.

Hence,

t =
∫ t

0
I{y(s)>0} ds +

∫ t

0
I{y(s)=0} ds = Rt + 1

ξ0

{
−y0 − inf

s≤t
Nρ

s

}
∨ 0, t ≥ 0.

Using the equality ARt = t for all t ≥ 0, one has for every t ∈ [0, T ]

Rt = max

{
s : s + 1

ξ0

[
−y0 − inf

r≤As

Nρ
r

]
∨ 0 ≤ t

}
= max

{
s : s + 1

ξ0

[
−y0 − inf

r≤s
N ′

r

]
∨ 0 ≤ t

}
= max

{
s :
[
−y0 − inf

r≤s
N ′

r

]
∨ 0 ≤ ξ0(t − s)

}
= max

{
s : −y0 − inf

r≤s
N ′

r ≤ ξ0(t − s), s ≤ t
}

≤ max
{
s : sup

r≤s

(−N ′
r

)≤ ξ0t + y0

}
∧ t.

By Theorem 2.7.2’ [22], there exists a Brownian motion W(t), t ≥ 0, defined probably on an extended probability space,
such that

−N ′
t = W
([

N ′]
t

)
, t ≥ 0.

We remark that [N ′]t = ∫ t∧RT

0 ρ(As)
2 ds ≥ t ∧ RT , t ≥ 0. Hence,

Rt ≤ max
{
s : sup

r≤s
W
([

N ′]
r

)≤ ξ0t + y0

}
∧ t

≤ max
{
s : sup

r≤s
W(r) ≤ ξ0t + y0

}
∧ t

≤ sup
{
s : sup

r≤s
W(r) ≤ ξ0t + y0

}
∧ t

= σξ0t+y0 ∧ t,

where σa := inf{t : W(t) = a}. Therefore,

ERt ≤ E(σξ0t+y0 ∧ t) ≤
√

2t

π
(ξ0t + y0).
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Case II: ξ0 = 0.
In this case, y(t) = y0 + ∫ t

0 ρ(s)I{y(s)>0} dB(s), t ≥ 0, is a continuous positive martingale. It implies that y stays
at zero for all t ≥ τ

y
y0 := inf{t : − ∫ t

0 ρ(s)I{y(s)>0} dB(s) = y0}. Hence, using Lemma 2.4 [28] and the fact that∫ t

0 ρ(s)I{y(s)>0} dB(s) = ∫ t

0 ρ(s) dB(s) for all t ∈ [0, τ
y
y0 ], we have

ERt = Eτ
y
y0 ≤ E(σy0 ∧ t) ≤

√
2t

π
y0.

Combining these two cases, we obtain the estimate

ERt ≤
√

2t

π
(ξ0t + y0), t ≥ 0.

The proposition is proved. �

A.2. The projection operator

We recall that for every g ∈ L2 the completion of the σ -field generated by g with respect to the Lebesgue measure Leb is
denoted by σ ∗(g). We also denote the projection operator in L2 on the closed linear subspace

L2(g) = {f ∈ L2 : f is σ ∗(g)-measurable
}

by prg .

Remark A.2.

(i) The operator prg is well-defined, since for two functions g1 and g2 coinciding a.e. the equality σ ∗(g1) = σ ∗(g2)

holds.
(ii) For each h ∈ L2, prg h coincides a.e. with the conditional expectation E(h|σ(g)) on the probability space

([0,1],B([0,1]),Leb), where B([0,1]) denotes the Borel σ -field on [0,1].

Recall that D↑ denotes the set of all non-decreasing càdlág functions from (0,1) to R. For fixed g ∈ D↑ we will
denote the family of intervals I (c) = g−1({c}) = {u : g(u) = c}, c ∈ R, satisfying Leb(I (c)) > 0 by Kg . We note that
either I1 ∩ I2 =∅ or I1 = I2 for any I1, I2 ∈ Kg . This implies that Kg is countable. Let

Gg :=
⋃

I∈Kg

I and Fg := (0,1) \ Gg.

For any function h ∈ L2 we define the function

(35) hg(u) :=
⎧⎨⎩

1

Leb(I )

∫
I

h(v) dv, u ∈ I ∈ Kg,

h(u), u ∈ Fg,

u ∈ (0,1).

Lemma A.3. Let g ∈ D↑ and h ∈ L2. Then prg h = hg a.e.

Proof. In order to prove the lemma, we first show that there exists a Borel function ϕ :R→ R such that

hg = ϕ(g).

This will imply the measurability of hg with respect to σ ∗(g).
Since g is a non-decreasing function, the restriction g|Fg of g to the Borel set Fg is an one-to-one map from Fg to

g(Fg) = {g(u) : u ∈ Fg}. By Kuratowski’s theorem (see Theorem A.10.5 [16]), g(Fg) is a Borel subset of R and (g|Fg )
−1

is a Borel measurable function from g(Fg) to Fg . Thus, we define

ϕ(x) = h
(
(g|Fg )

−1(x)
)
, x ∈ g(Fg).
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If x ∈ g((0,1)) \ g(Fg), then there exists an unique interval Ix ∈ Kg such that g(u) = x for all u ∈ Ix . Hence, we can
define

ϕ(x) =
⎧⎨⎩

1

Leb(Ix)

∫
Ix

h(v) dv, x ∈ g
(
(0,1)
) \ g(Fg),

0, x /∈ g
(
(0,1)
)
.

By the construction of ϕ, it is easy to see that ϕ is a Borel function and for all u ∈ (0,1)

ϕ
(
g(u)
)= hg(u).

Next, taking an arbitrary σ ∗(g)-measurable function f ∈ L2 and noting that there exists a Borel function ψ : R → R

such that f = ψ(g) a.e., we can estimate the norm ‖f − h‖2
L2

from below as follows∫ 1

0

(
f (u) − h(u)

)2
du =
∫ 1

0

(
ψ
(
g(u)
)− h(u)

)2
du

≥
∑
I∈Kg

∫
I

(
ψ(cI ) − h(u)

)2
du

≥
∑
I∈Kg

∫
I

(
1

Leb(I )

∫
I

h(v) dv − h(u)

)2

du

=
∫ 1

0

(
hg(u) − h(u)

)2
du,

where cI = g(u), u ∈ I , and the last inequality is obtained by minimising the map

θ �→
∫

I

(
θ − h(u)

)2
du.

This completes the proof of the lemma. �

As before, we denote the (closed) subset of functions from L2 which have a non-decreasing modification by L
↑
2 .

Lemma A.4. For each g ∈ D↑ the projection operator prg maps L
↑
2 into L

↑
2 .

The statement easily follows from the explicit formula (35) for prg h.
Let g : (0,1) →R be a non-decreasing function. We define

(36) mg(u) := Leb
{
v : g(u) = g(v)

}
, u ∈ (0,1).

Remark A.5. If g1 = g2 a.e., then mg1 = mg2 a.e. Thus, mg is well-defined for any g ∈ L
↑
2 .

Let ‖A‖HS be the Hilbert–Schmidt norm of a linear operator A on L2, that is,

‖A‖2
HS =

∞∑
i=1

‖Aei‖2
L2

,

where {ei, i ∈N} is an orthonormal basis of L2. For g ∈ L
↑
2 the number of distinct values of its unique modification from

D↑ is denoted by #g.

Lemma A.6. Let g ∈ L
↑
2 and mg be defined by (36). Then

‖prg ‖2
HS =
∫ 1

0

du

mg(u)
= #g.

In particular, ‖prg ‖2
HS < ∞ if and only if the càdlág modification of g belongs to S↑.
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Proof. We take g̃ ∈ D↑ such that g = g̃ a.e. and note that ‖prg ‖2
HS = #g follows from Lemma 6.1 [29]. Moreover,

‖prg ‖2
HS < ∞ if and only if g̃ ∈ S↑. Therefore, we only have to show that

∫ 1
0

du
mg(u)

= #g.
Let Kg̃ and Fg̃ be defined as in the beginning of the present section. Then, obviously, mg̃(u) = 0 if and only if u ∈ Fg̃ .

If
∫ 1

0
du

mg(u)
< ∞, then Leb(Fg̃) = 0 and

(37)
∫ 1

0

du

mg(u)
=
∑
I∈Kg̃

∫
I

du

mg(u)
= #Kg̃,

where #Kg̃ denotes the number of distinct intervals in Kg̃ . Since g̃ is càdlág, #Kg̃ < ∞ and Leb(Fg̃) = 0, one can see

that Fg̃ =∅. This implies that #g̃ = #Kg̃ . Thus, #g̃ ≤ ∫ 1
0

du
mg(u)

(including the trivial case
∫ 1

0
du

mg(u)
= +∞).

Next, if #g̃ < ∞, then g̃ ∈ S↑, and, consequently, Fg̃ =∅. This together with (37) yield
∫ 1

0
du

mg(u)
≤ #g̃. The lemma is

proved. �

Lemma A.7. For each h ∈ L2 the map g �→ ‖prg h‖L2 from L
↑
2 to R is lower semi-continuous, that is,

‖prg h‖L2 ≤ lim
n→∞

‖prgn
h‖L2 ,

for each sequence {gn,n ≥ 1} converging to g in L
↑
2 .

Proof. We first note that it is enough to prove the lemma only for gn → g =: g0 a.e., since every convergent sequence in
L2 contains a convergent a.e. subsequence.

Let

J := {x ∈ R : Leb
(
g−1

n

({x}))= 0 for all n ≥ 0
}
.

Then Leb(R \ J ) = 0, due to the countability of R \ J . Thus, J is dense in R and, consequently, we can choose an
increasing sequence of finite subsets Jk ⊂ J , k ≥ 1, such that

⋃
x∈Jk

(x − 1
k
, x + 1

k
) ⊃ [−k, k]. Let Jk = {xk

i , i ∈ [pk]}
be ordered in an increasing way. For simplicity, we also set xk

0 := −∞ and xk
pk+1 := +∞. It is easily seen that for each

n ≥ 0 the sequence of σ -fields

Sk
n := σ ∗({g−1

n

([
xk
i−1, x

k
i

))
, i ∈ [pk + 1]}), k ≥ 1,

increases to σ ∗(gn). Moreover, for all n ≥ 0 and k ≥ 1

E
(
h|Sk

n

)= pk+1∑
i=1

hIk
i,n
II k

i,n
a.e.,

where I k
i,n := g−1

n ([xk
i−1, x

k
i )), hIk

i,n
:= 1

Leb(I k
i,n)

∫
I k
i,n

h(v) dv and E(·|·) denotes the conditional expectation on the proba-

bility space ([0,1],B([0,1]),Leb). Thus, by Theorem 7.23 [25] and Remark A.2(ii), for each n ≥ 0

E
(
h|Sk

n

)→ prgn
h in L2 as k → ∞.

In particular, for every n ≥ 0

(38) sup
k≥1

∥∥E(h|Sk
n

)∥∥
L2

= ‖prgn
h‖L2 ,

since Sk
n , k ≥ 1, increases and E(h|Sk

n) is the projection of h in L2 into the subspace of all Sk
n -measurable functions.

Next, we fix k ≥ 1 and i ∈ [pk + 1] such that Leb(I k
i,0) > 0 and denote the ends of I k

i,0 by a and b, a < b. Then, using
the monotonicity of the functions gn, n ≥ 0, the convergence of {gn,n ≥ 1} to g0 and the choice of Jk , we have that
an → a and bn → b, where an and bn are the ends of some intervals I k

in,n. Consequently, for every k ≥ 1

E
(
h|Sk

n

)→ E
(
h|Sk

0

)
a.e. as n → ∞.
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By Fatou’s lemma, for every k ≥ 1

(39)
∥∥E(h|Sk

0

)∥∥
L2

≤ lim
n→∞
∥∥E(h|Sk

n

)∥∥
L2

.

Hence,

‖prg0
h‖L2

(38)= sup
k≥1

∥∥E(h|Sk
0

)∥∥
L2

(39)≤ sup
k≥1

lim
n→∞
∥∥E(h|Sk

n

)∥∥
L2

(38)≤ sup
k≥1

lim
n→∞

‖prgn
h‖L2 = lim

n→∞
‖prgn

h‖L2 .

The lemma is proved. �

A.3. Limit properties of some projection-valued functions

We recall that L2(L2) denotes the space of Hilbert–Schmidt operators on L2 with the inner product defined by

(A,B)HS =
∞∑
i=1

(Aei,Bei)L2 ,

where {ei, i ∈ N} is an orthonormal basis of L2, and the space L2([0, T ],L2(L2)) is endowed with the inner product

(A,B)T,HS =
∫ T

0
(At ,Bt )HS dt, A,B ∈ L2

([0, T ],L2(L2)
)
.

Since L2(L2) is a Hilbert space, L2([0, T ],L2(L2)) also is a Hilbert space.

Proposition A.8. Let functions f and f n, n ≥ 1, from C([0, T ],L↑
2 ) satisfy the following conditions

(a) {P n,n ≥ 1} converges weakly in L2([0, T ],L2(L2)) to P ∞, that is,(
P n,A
)
T ,HS → (P ∞,A

)
T ,HS as n → ∞

for any A ∈ L2([0, T ],L2(L2)), where P n
t = prf n

t
, t ∈ [0, T ];

(b) there exists R ⊆ [0, T ] such that Leb([0, T ] \ R) = 0 and ‖Pth‖L2 ≤ limn→∞ ‖P n
t h‖L2 for all t ∈ R and h ∈ L2,

where Pt = prft
, t ∈ [0, T ];

(c) for every h ∈ L2 and almost all t ∈ [0, T ] P ∞
t (Pth) = P ∞

t h.

Then P ∞ = P .

Remark A.9.

(i) Condition (a) together with the uniform boundedness principle imply the boundedness of the sequence {P n,n ≥ 1}
in L2([0, T ],L2(L2)).

(ii) The function P belongs to L2([0, T ],L2(L2)) and

‖P‖T ,HS ≤ lim
n→∞
∥∥P n
∥∥

T ,HS,

by condition (b), Fatou’s lemma and the boundedness of {P n,n ≥ 1}.
(iii) Since P n

t is an adjoint operator in L2 for every t ∈ [0, T ], P ∞
t is also adjoint for almost all t ∈ [0, T ], by Corol-

lary A.11 below.

To prove the proposition, we need to prove some auxiliary statements.

Lemma A.10. Let {ei, i ∈ N} be an orthonormal basis of L2 and E
i,j,r
t = I[0,r](t)ei ⊗ ej , t ∈ [0, T ], i, j ∈ N, r ∈ [0, T ].

Then span{Ei,j,r , r ∈ [0, T ], i, j ∈ N} is dense in L2([0, T ],L2(L2)).

Proof. The statement easily follows from the density of simple functions
∑n

k=1 I[tk−1,tk)Ak in L2([0, T ],L2(L2)), where
0 = t0 < t1 < · · · < tn = T and Ak ∈ L2(L2), k ∈ [n], and the fact that {ei ⊗ ej , i, j ∈ N} is an orthonormal basis of
L2(L2). �
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Corollary A.11. Let {ei, i ∈ N} be an orthonormal basis of L2 and A,B ∈ L2([0, T ],L2(L2)). If for each r ∈ [0, T ] and
i, j ∈ N ∫ r

0
(Atei, ej )L2 dt =

∫ r

0
(Btei, ej )L2 dt,

then A = B .

Proof. The statement immediately follows from Lemma A.10 and the equality

(
A,Ei,j,r

)
T ,HS =

∫ r

0
(Atei, ej )L2 dt. �

Proof of Proposition A.8. Let e ∈ L2([0, T ],L2) such that

(40) ‖et‖L2 = 1 and Ptet = et for almost all t ∈ [0, T ].
We first prove that

(41)
(
P ∞

t et , et

)
L2

= 1 for almost all t ∈ [0, T ].
To show this, we set for fixed r ∈ [0, T ]

Ar
t := I[0,r](t)et ⊗ et , t ∈ [0, T ],

and use the weak convergence of P n to P ∞. We get

r =
∫ r

0
‖et‖2

L2
dt =
∫ r

0
‖Ptet‖2

L2
dt

(b)≤
∫ r

0
lim

n→∞
∥∥P n

t et

∥∥2
L2

dt

[
Fatou’s lemma

]≤ lim
n→∞

∫ r

0

∥∥P n
t et

∥∥2
L2

dt = lim
n→∞

∫ r

0

(
P n

t et , et

)
L2

dt

= lim
n→∞
(
Ar,P n

)
T ,HS

(a)= (Ar,P ∞)
T ,HS =

∫ r

0

(
P ∞

t et , et

)
L2

dt.

On the other hand, (P n
t et , et )L2 = ‖P n

t et‖2
L2

≤ ‖et‖2
L2

= 1 for all t ∈ [0, T ] and n ≥ 1. Hence,∫ r

0

(
P ∞

t et , et

)
L2

dt = lim
n→∞

∫ r

0

(
P n

t et , et

)
L2

dt ≤ r.

Consequently, ∫ r

0

(
P ∞

t et , et

)
L2

dt = r

for all r ∈ [0, T ]. This immediately implies (41).
Next, without loss of generality, we may suppose that ft ∈ D↑ for all t ∈ [0, T ]. We set for each v ∈ (0,1)

ev
t (u) = 1√

mft (v)
I{ft (v)=ft (u)}, u ∈ (0,1), t ∈ [0, T ],

where mft is defined by (36). By Remark A.9(ii),
∫ T

0 ‖Pt‖2
HS dt < ∞. Thus, ft ∈ S↑ for almost all t ∈ [0, T ], by

Lemma A.6. This together with the right continuity of ft (u),u ∈ (0,1), imply that for every v ∈ (0,1) the function
ev
t is well-defined for almost all t and ev ∈ L2([0, T ],L2). Let

e
v1,v2
t :=

⎧⎨⎩1, ft (v1) = ft (v2),

e
v1
t + e

v2
t√

2
, ft (v1) 	= ft (v2),

t ∈ [0, T ].

It is easy to see that ev1,v2 belong to L2([0, T ],L2) for all v1, v2 ∈ (0,1).
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Since ev1,v2 and ev1 satisfy (40) for all v1, v2 ∈ (0,1),

(42)
(
P ∞

t e
v1,v2
t , e

v1,v2
t

)
L2

= 1 and
(
P ∞

t e
v1
t , e

v1
t

)
L2

= 1 for almost all t ∈ [0, T ].
We set

R = {t ∈ [0, T ] : (P ∞
t e

v1,v2
t , e

v1,v2
t

)
L2

= 1 and
(
P ∞

t e
v1
t , e

v1
t

)
L2

= 1, v1, v2 ∈ (0,1) ∩Q
}

∩ {t ∈ [0, T ] : P ∞
t (Pt ) = P ∞

t and ‖Pt‖HS < ∞}∩ {t ∈ [0, T ] : P ∞
t is adjoint

}
.

Then Leb([0, T ] \ R) = 0, by (42), Condition (c) and Remark A.9(ii), (iii).
Next, we fix t ∈ R and note that ft is a step function with a finite number of values, by Lemma A.6. Thus, there

exists v1, . . . , vl from (0,1) ∩ Q, which depends on t , such that l = #ft and {ei := e
vi
t , i = 1, . . . , l} is an orthonormal

basis of the image of Pt . We extend {ei, i = 1, . . . , l} to an orthonormal basis of L2 denoted by {ei, i ∈ N} and note that
ft (vi) 	= ft (vj ) for i 	= j , according to the definition of ev . By the choice of t , (P ∞

t ei , ei)L2 = 1, i = 1, . . . , l. Moreover,
(P ∞

t ei , ej )L2 = 0 for all i, j ∈ [l] and i 	= j . Indeed,

1 = (P ∞
t e

vi ,vj

t , e
vi ,vj

t

)
L2

= 1

2

(
P ∞

t (ei + ej ), ei + ej

)
L2

= 1

2

[(
P ∞

t ei , ei

)
L2

+ (P ∞
t ej , ej

)
L2

+ 2
(
P ∞

t ei , ej

)
L2

]
= 1 + (P ∞

t ei , ej

)
L2

.

If i > l, then

P ∞
t ei = P ∞

t (Pt ei)L2 = P ∞
t 0 = 0,

by Condition (c). This implies that (P ∞
t ei , ej )L2 = (Ptei, ej )L2 for all i, j ∈ N. Thus, Pt = P ∞

t . The proposition is
proved. �

A.4. Quadratic variations of L2-valued continuous semimartingales

Let (�,F,P) be a complete probability space and (Ft )t∈[0,T ] be a complete right continuous filtration.

Proposition A.12. Let g ∈ L
↑
2 , Mt , t ∈ [0, T ], be a continuous L2-valued square-integrable (Ft )-martingale with

quadratic variation

〈M〉t =
∫ t

0
LsL

∗
s ds, t ∈ [0, T ],

where Lt , t ∈ [0, T ], is an (Ft )-adapted L2(L2)-valued process belonging to L2([0, T ],L2(L2)) a.s. and L∗
s denotes the

adjoint operator of Ls . Let bt , t ∈ [0, T ], be an (Ft )-adapted L2-valued continuous process such that for each h ∈ L2 the
process (bt , h)L2 , t ∈ [0, T ], has a locally finite variation. Also assume that the process

Xt := g + Mt + bt , t ∈ [0, T ],

takes values in L
↑
2 . Then

P
{∃R ⊆ [0, T ] s.t. Leb

{[0, T ] \ R
}= 0 and Lt(prXt

h) = Lth,∀t ∈ R,∀h ∈ L2
}= 1.

To prove the proposition, we need the following lemma.

Lemma A.13. Let x(t), t ∈ [0, T ], be a continuous real valued semimartingale. Then∫ T

0
I{0}
(
x(t)
)
d[x]t = 0 a.s.
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Proof. The statement immediately follows from the equality∫ T

0
I{0}
(
x(t)
)
d[x]t =

∫ +∞

−∞
I{0}(y)l

y
T dy = 0,

where l
y
t , t ∈ [0, T ], y ∈R, is the local time of x (see, e.g., Theorem 22.5 [25]). �

Proof of Proposition A.12. We set

(43) fa,b := 1

b − a
I[a,b)

for each a, b ∈ [0,1], a < b, and

R := {fa,b : a, b ∈ [0,1] ∩Q, a < b
}
.

If b1 ≤ a2, then we will write fa1,b1 � fa2,b2 .
Taking f ′, f ′′ ∈R, f ′ � f ′′ and applying Lemma A.13 to the semimartingale

x(t) := Xt

(
f ′′)− Xt

(
f ′)= Xt

(
f ′′ − f ′), t ∈ [0, T ],

where Xt(f ) := (Xt , f )L2 , we obtain

0 =
∫ T

0
I{0}
(
Xt

(
f ′′)− Xt

(
f ′))d[X(f ′′ − f ′′)]

t
=
∫ T

0
I{0}
(
Xt

(
f ′′)− Xt

(
f ′))∥∥Lt

(
f ′′ − f ′)∥∥2

L2
dt a.s.

For each ω ∈ �, we set

R(ω) := {t ∈ [0, T ] : I{0}
(
Xt

(
f ′′)(ω) − Xt

(
f ′)(ω)

)∥∥Lt(ω)
(
f ′′ − f ′)∥∥

L2
= 0, ∀f ′, f ′′ ∈R, f ′ � f ′′}

and

�′ = {ω : Leb
([0, T ] \ R(ω)

)= 0
}
.

Since R is countable, we have that P{�′} = 1. Next, let ω ∈ �′ and t ∈ R(ω) be fixed. To finish the proof of the theorem,
it is needed to show that

(44) Lt(ω)(prXt (ω) h) = Lt(ω)h

for all h ∈ L2. But since C[0,1] is dense in L2, the equality is enough to check only for h ∈ C[0,1]. Therefore, we fix
h ∈ C[0,1] and denote the modification of Xt(ω) from D↑ also by Xt(ω).

First, we take arbitrary a < b from (0,1) ∩Q such that Xt(a,ω) = Xt(b,ω) and show that

(45) Lt(ω)h = Lt(ω)(hIπc + hπ Iπ ),

where hπ := 1
b−a

∫ b

a
h(u)du, π := [a, b] and πc := [0,1] \ π . Let a = u0 < u1 < · · · < uk = b be an arbitrary partition

of [a, b] with ui ∈Q, i ∈ [k]. The monotonicity of Xt(u,ω), u ∈ (0,1), yields that Xt(fui−1,ui
)(ω) = Xt(fuj−1,uj

)(ω) for
all i, j ∈ [k]. Thus, we have that

Lt(ω)fui−1,ui
= Lt(ω)fuj−1,uj

, i, j ∈ [k],
due to the choice of t and ω, where fui−1,ui

, fuj−1,uj
are defined by (43). Using the equality fa,b =∑k

i=1
ui−ui−1

b−a
fui−1,ui

,
one can easily seen that

(46) Lt(ω)fui−1,ui
= Lt(ω)fa,b

for all i ∈ [k]. Taking

hk := hIπc +
k∑

i=1

h(ui−1)I[ui−1,ui )
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and using (46), we obtain

Lt(ω)hk = Lt(ω)(hIπc ) +
k∑

i=1

h(ui−1)Lt (ω)I[ui−1,ui )

= Lt(ω)(hIπc ) +
k∑

i=1

h(ui−1)(ui − ui−1)Lt (ω)fui−1,ui

= Lt(ω)(hIπc ) +
k∑

i=1

h(ui−1)(ui − ui−1)Lt (ω)fa,b = Lt(ω)h̃k,

where

h̃k = hIπc + 1

b − a

k∑
i=1

h(ui−1)(ui − ui−1)Iπ .

Since hk → h and h̃k → hIπc + hπ Iπ in L2 as maxi∈[k](ui − ui−1) → 0, the equality (45) holds.
Next, by the approximation argument, it is easy to prove that (45) folds for each π ∈KXt (ω), where Kg was defined in

Section A.2 for any g ∈ D↑. Let KXt (ω) = {πi, i ∈ N}, that is countable, be ordered in decreasing of the length of πi . If
Kg is finite then (44) immediately follows from (45) and Lemma A.3. Otherwise, using (45), the continuity of Lt(ω) and
Lemma A.3, we have

Lt(ω)h = Lt(ω)

(
hIπ̃l

+
l∑

i=1

hπi
Iπi

)
→ Lt(ω)(hXt (ω)) = Lt(ω)(prXt (ω) h) as l → ∞,

where hg is defined by (35) and π̃l := [0,1] \ (
⋃l

i=1 πi). This completes the proof of the proposition. �

A.5. Some compact sets in Skorohod space

Let (E, r) be a Polish space and let D([a, b],E) denote the space of càdlág functions from [a, b] to E which are contin-
uous at b. We endow D([a, b],E) with the metric

d[a,b](f, g) = inf
λ∈�[a,b]

{
γ (λ) ∨ sup

u∈[a,b]
r
(
f
(
λ(u)
)
, g(u)
)}

, f, g ∈ D
([a, b],E),

where �[a,b] is the set of all strictly increasing functions λ : [a, b] → [a, b] such that λ(a) = a, λ(b) = b and

γ (λ) := sup
v<u

∣∣∣∣log
λ(u) − λ(v)

u − v

∣∣∣∣< ∞.

For each [c, d] ⊂ [a, b] and f ∈ D([a, b],E) it is clear that the function

f [c,d](u) :=
{

f (u), u ∈ [c, d),

f (d−), u = d.

belongs to D([c, d],E).

Proposition A.14. Let U = {ui, i = 0, . . . , l} be an ordered partition of [a, b] and let {Xn,n ≥ 1} be an arbitrary
sequence of random elements in D([a, b],E). If {X[ui−1,ui ]

n , n ≥ 1} is tight in D([ui−1, ui],E) for any i ∈ [l], then
{Xn,n ≥ 1} is tight in D([a, b],E).

Proof. Let Ki be compact in D([ui−1, ui],E), i ∈ [l], and let

(47) K := {f ∈ D
([a, b],E) : f [ui−1,ui ] ∈ Ki, i ∈ [l]}.
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In order to prove the proposition, it is enough to show that K is compact in D([a, b],E). Indeed, by the definition of the
tightness (see, e.g., Section 3.2 [16]), for each ε > 0 there exist compact sets Ki , i ∈ [l], such that

P
{
X

[ui−1,ui ]
n /∈ Ki

}≤ ε

l

for all i ∈ [l] and n ≥ 1. Thus,

P{Xn /∈ K} = P

{
l⋃

i=1

{
X

[ui−1,ui ]
n /∈ Ki

}}≤ ε,

where K is defined by (47). This implies the tightness of {Xn,n ≥ 1} in D([a, b],E).
Let {fn,n ≥ 1} ⊂ K . Then there exists a subsequence N ⊂ N such that f

[ui−1,ui ]
n converges to f i in D([ui−1, ui],E)

along N for any i ∈ [l]. Thus, for every i ∈ [l] there exists a sequence {λi
n, n ∈ N} ⊂ �[ui−1,ui ] such that

γ
(
λi

n

)→ 0 and sup
u∈[ui−1,ui ]

r
(
f

[ui−1,ui ]
n

(
λi

n(u)
)
, f i(u)

)→ 0 along N.

Taking

f (u) :=
l∑

i=1

f i(u)I[ui−1,ui )(u) + f l(u)I{ul}(u)

and

λn :=
l∑

i=1

λi
n(u)I[ui−1,ui )(u) + λl

n(u)I{ul}(u), n ≥ 1,

it is easily seen that f ∈ D([a, b],E) and λn is a continuous strictly increasing function from [a, b] onto [a, b] for all
n ≥ 1. Moreover,

sup
u∈[a,b]
∣∣λn(u) − u

∣∣→ 0 and sup
u∈[a,b]

r
(
fn

(
λn(u)
)
, f (u)
)→ 0 along N.

By Theorem 12.1 [5], fn converges to f in D([a, b],E) along N . The proposition is proved. �
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